scispace - formally typeset
Search or ask a question

Showing papers by "University of Wisconsin–Milwaukee published in 2019"


Journal ArticleDOI
Eric C. Bellm1, Shrinivas R. Kulkarni2, Matthew J. Graham2, Richard Dekany2, Roger M. H. Smith2, Reed Riddle2, Frank J. Masci2, George Helou2, Thomas A. Prince2, Scott M. Adams2, Cristina Barbarino3, Tom A. Barlow2, James Bauer4, Ron Beck2, Justin Belicki2, Rahul Biswas3, Nadejda Blagorodnova2, Dennis Bodewits4, Bryce Bolin1, V. Brinnel5, Tim Brooke2, Brian D. Bue2, Mattia Bulla3, Rick Burruss2, S. Bradley Cenko6, S. Bradley Cenko4, Chan-Kao Chang7, Andrew J. Connolly1, Michael W. Coughlin2, John Cromer2, Virginia Cunningham4, Kaushik De2, Alex Delacroix2, Vandana Desai2, Dmitry A. Duev2, Gwendolyn Eadie1, Tony L. Farnham4, Michael Feeney2, Ulrich Feindt3, David Flynn2, Anna Franckowiak, Sara Frederick4, Christoffer Fremling2, Avishay Gal-Yam8, Suvi Gezari4, Matteo Giomi5, Daniel A. Goldstein2, V. Zach Golkhou1, Ariel Goobar3, Steven Groom2, Eugean Hacopians2, David Hale2, John Henning2, Anna Y. Q. Ho2, David Hover2, Justin Howell2, Tiara Hung4, Daniela Huppenkothen1, David Imel2, Wing-Huen Ip7, Wing-Huen Ip9, Željko Ivezić1, Edward Jackson2, Lynne Jones1, Mario Juric1, Mansi M. Kasliwal2, Shai Kaspi10, Stephen Kaye2, Michael S. P. Kelley4, Marek Kowalski5, Emily Kramer2, Thomas Kupfer2, Thomas Kupfer11, Walter Landry2, Russ R. Laher2, Chien De Lee7, Hsing Wen Lin12, Hsing Wen Lin7, Zhong-Yi Lin7, Ragnhild Lunnan3, Ashish Mahabal2, Peter H. Mao2, Adam A. Miller13, Adam A. Miller14, Serge Monkewitz2, Patrick J. Murphy2, Chow-Choong Ngeow7, Jakob Nordin5, Peter Nugent15, Peter Nugent16, Eran O. Ofek8, Maria T. Patterson1, Bryan E. Penprase17, Michael Porter2, L. Rauch, Umaa Rebbapragada2, Daniel J. Reiley2, Mickael Rigault18, Hector P. Rodriguez2, Jan van Roestel19, Ben Rusholme2, J. V. Santen, Steve Schulze8, David L. Shupe2, Leo Singer4, Leo Singer6, Maayane T. Soumagnac8, Robert Stein, Jason Surace2, Jesper Sollerman3, Paula Szkody1, Francesco Taddia3, Scott Terek2, Angela Van Sistine20, Sjoert van Velzen4, W. Thomas Vestrand21, Richard Walters2, Charlotte Ward4, Quanzhi Ye2, Po-Chieh Yu7, Lin Yan2, Jeffry Zolkower2 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope, which provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey.
Abstract: The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.

1,009 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott2, T. D. Abbott, Fausto Acernese3  +1157 moreInstitutions (70)
TL;DR: In this paper, the authors improved initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data.
Abstract: On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.

715 citations


Posted ContentDOI
Daniel Taliun1, Daniel N. Harris2, Michael D. Kessler2, Jedidiah Carlson3  +191 moreInstitutions (61)
06 Mar 2019-bioRxiv
TL;DR: The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation as well as resources and early insights from the sequence data.
Abstract: Summary paragraph The Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency

662 citations


Journal ArticleDOI
Nasim Mavaddat1, Kyriaki Michailidou2, Kyriaki Michailidou1, Joe Dennis1  +307 moreInstitutions (105)
TL;DR: This PRS, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset is developed and empirically validated and is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
Abstract: Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.

653 citations


Journal ArticleDOI
TL;DR: A registry of dementia sufferers in the United States shows that race, age, race, and ethnicity are important risk factors for ADRD.
Abstract: Introduction Alzheimer's disease and related dementias (ADRD) cause a high burden of morbidity and mortality in the United States. Age, race, and ethnicity are important risk factors for ADRD. Methods We estimated the future US burden of ADRD by age, sex, and race and ethnicity by applying subgroup-specific prevalence among Medicare Fee-for-Service beneficiaries aged ≥65 years in 2014 to subgroup-specific population estimates for 2014 and population projection data from the United States Census Bureau for 2015 to 2060. Results The burden of ADRD in 2014 was an estimated 5.0 million adults aged ≥65 years or 1.6% of the population, and there are significant disparities in ADRD prevalence among population subgroups defined by race and ethnicity. ADRD burden will double to 3.3% by 2060 when 13.9 million Americans are projected to have the disease. Discussion These estimates can be used to guide planning and interventions related to caring for the ADRD population and supporting caregivers.

520 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1215 moreInstitutions (134)
TL;DR: In this paper, the mass, spin, and redshift distributions of binary black hole (BBH) mergers with LIGO and Advanced Virgo observations were analyzed using phenomenological population models.
Abstract: We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

464 citations


Journal ArticleDOI
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a robotic time-domain survey currently in progress using the Palomar 48-inch Schmidt Telescope, which uses a 600 megapixel camera to scan the entire northern visible sky at rates of ~3760 square degrees/hour.
Abstract: The Zwicky Transient Facility (ZTF) is a new robotic time-domain survey currently in progress using the Palomar 48-inch Schmidt Telescope. ZTF uses a 47 square degree field with a 600 megapixel camera to scan the entire northern visible sky at rates of ~3760 square degrees/hour to median depths of g ~ 20.8 and r ~ 20.6 mag (AB, 5σ in 30 sec). We describe the Science Data System that is housed at IPAC, Caltech. This comprises the data-processing pipelines, alert production system, data archive, and user interfaces for accessing and analyzing the products. The real-time pipeline employs a novel image-differencing algorithm, optimized for the detection of point-source transient events. These events are vetted for reliability using a machine-learned classifier and combined with contextual information to generate data-rich alert packets. The packets become available for distribution typically within 13 minutes (95th percentile) of observation. Detected events are also linked to generate candidate moving-object tracks using a novel algorithm. Objects that move fast enough to streak in the individual exposures are also extracted and vetted. We present some preliminary results of the calibration performance delivered by the real-time pipeline. The reconstructed astrometric accuracy per science image with respect to Gaia DR1 is typically 45 to 85 milliarcsec. This is the RMS per-axis on the sky for sources extracted with photometric S/N ≥ 10 and hence corresponds to the typical astrometric uncertainty down to this limit. The derived photometric precision (repeatability) at bright unsaturated fluxes varies between 8 and 25 millimag. The high end of these ranges corresponds to an airmass approaching ~2—the limit of the public survey. Photometric calibration accuracy with respect to Pan-STARRS1 is generally better than 2%. The products support a broad range of scientific applications: fast and young supernovae; rare flux transients; variable stars; eclipsing binaries; variability from active galactic nuclei; counterparts to gravitational wave sources; a more complete census of Type Ia supernovae; and solar-system objects.

453 citations


Journal ArticleDOI
Jean-Christophe Golaz1, Peter M. Caldwell1, Luke Van Roekel2, Mark R. Petersen2, Qi Tang1, Jonathan Wolfe2, G. W. Abeshu3, Valentine G. Anantharaj4, Xylar Asay-Davis2, David C. Bader1, Sterling Baldwin1, Gautam Bisht5, Peter A. Bogenschutz1, Marcia L. Branstetter4, Michael A. Brunke6, Steven R. Brus2, Susannah M. Burrows7, Philip Cameron-Smith1, Aaron S. Donahue1, Michael Deakin8, Michael Deakin9, Richard C. Easter7, Katherine J. Evans4, Yan Feng10, Mark Flanner11, James G. Foucar9, Jeremy Fyke2, Brian M. Griffin12, Cecile Hannay13, Bryce E. Harrop7, Mattthew J. Hoffman2, Elizabeth Hunke2, Robert Jacob10, Douglas W. Jacobsen2, Nicole Jeffery2, Philip W. Jones2, Noel Keen5, Stephen A. Klein1, Vincent E. Larson12, L. Ruby Leung7, Hongyi Li3, Wuyin Lin14, William H. Lipscomb13, William H. Lipscomb2, Po-Lun Ma7, Salil Mahajan4, Mathew Maltrud2, Azamat Mametjanov10, Julie L. McClean15, Renata B. McCoy1, Richard Neale13, Stephen Price2, Yun Qian7, Philip J. Rasch7, J. E. Jack Reeves Eyre6, William J. Riley5, Todd D. Ringler16, Todd D. Ringler2, Andrew Roberts2, Erika Louise Roesler9, Andrew G. Salinger9, Zeshawn Shaheen1, Xiaoying Shi4, Balwinder Singh7, Jinyun Tang5, Mark A. Taylor9, Peter E. Thornton4, Adrian K. Turner2, Milena Veneziani2, Hui Wan7, Hailong Wang7, Shanlin Wang2, Dean N. Williams1, Phillip J. Wolfram2, Patrick H. Worley4, Shaocheng Xie1, Yang Yang7, Jin-Ho Yoon17, Mark D. Zelinka1, Charles S. Zender18, Xubin Zeng6, Chengzhu Zhang1, Kai Zhang7, Yuying Zhang1, X. Zheng1, Tian Zhou7, Qing Zhu5 
TL;DR: Energy Exascale Earth System Model (E3SM) project as mentioned in this paper is a project of the U.S. Department of Energy that aims to develop and validate the E3SM model.
Abstract: Energy Exascale Earth System Model (E3SM) project - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research; Climate Model Development and Validation activity - Office of Biological and Environmental Research in the US Department of Energy Office of Science; Regional and Global Modeling and Analysis Program of the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research; National Research Foundation [NRF_2017R1A2b4007480]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE Office of Science User Facility [DE-AC05-00OR22725]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE [DE-AC05-76RLO1830]; National Center for Atmospheric Research - National Science Foundation [1852977];[DE-SC0012778]

437 citations


Journal ArticleDOI
Donald J. Hagler1, Sean N. Hatton1, M. Daniela Cornejo1, Carolina Makowski2, Damien A. Fair3, Anthony Steven Dick4, Matthew T. Sutherland4, B. J. Casey5, M Deanna6, Michael P. Harms6, Richard Watts5, James M. Bjork7, Hugh Garavan8, Laura Hilmer1, Christopher J. Pung1, Chelsea S. Sicat1, Joshua M. Kuperman1, Hauke Bartsch1, Feng Xue1, Mary M. Heitzeg9, Angela R. Laird4, Thanh T. Trinh1, Raul Gonzalez4, Susan F. Tapert1, Michael C. Riedel4, Lindsay M. Squeglia10, Luke W. Hyde9, Monica D. Rosenberg5, Eric Earl3, Katia D. Howlett11, Fiona C. Baker12, Mary E. Soules9, Jazmin Diaz1, Octavio Ruiz de Leon1, Wesley K. Thompson1, Michael C. Neale7, Megan M. Herting13, Elizabeth R. Sowell13, Ruben P. Alvarez11, Samuel W. Hawes4, Mariana Sanchez4, Jerzy Bodurka14, Florence J. Breslin14, Amanda Sheffield Morris14, Martin P. Paulus14, W. Kyle Simmons14, Jonathan R. Polimeni15, Andre van der Kouwe15, Andrew S. Nencka16, Kevin M. Gray10, Carlo Pierpaoli11, John A. Matochik11, Antonio Noronha11, Will M. Aklin11, Kevin P. Conway11, Meyer D. Glantz11, Elizabeth Hoffman11, Roger Little11, Marsha F. Lopez11, Vani Pariyadath11, Susan R.B. Weiss11, Dana L. Wolff-Hughes, Rebecca DelCarmen-Wiggins, Sarah W. Feldstein Ewing3, Oscar Miranda-Dominguez3, Bonnie J. Nagel3, Anders Perrone3, Darrick Sturgeon3, Aimee Goldstone12, Adolf Pfefferbaum12, Kilian M. Pohl12, Devin Prouty12, Kristina A. Uban17, Susan Y. Bookheimer18, Mirella Dapretto18, Adriana Galván18, Kara Bagot1, Jay N. Giedd1, M. Alejandra Infante1, Joanna Jacobus1, Kevin Patrick1, Paul D. Shilling1, Rahul S. Desikan19, Yi Li19, Leo P. Sugrue19, Marie T. Banich20, Naomi P. Friedman20, John K. Hewitt20, Christian J. Hopfer20, Joseph T. Sakai20, Jody Tanabe20, Linda B. Cottler21, Sara Jo Nixon21, Linda Chang22, Christine C. Cloak22, Thomas Ernst22, Gloria Reeves22, David N. Kennedy23, Steve Heeringa9, Scott Peltier9, John E. Schulenberg9, Chandra Sripada9, Robert A. Zucker9, William G. Iacono24, Monica Luciana24, Finnegan J. Calabro25, Duncan B. Clark25, David A. Lewis25, Beatriz Luna25, Claudiu Schirda25, Tufikameni Brima26, John J. Foxe26, Edward G. Freedman26, Daniel W. Mruzek26, Michael J. Mason27, Rebekah S. Huber28, Erin McGlade28, Andrew P. Prescot28, Perry F. Renshaw28, Deborah A. Yurgelun-Todd28, Nicholas Allgaier8, Julie A. Dumas8, Masha Y. Ivanova8, Alexandra Potter8, Paul Florsheim29, Christine L. Larson29, Krista M. Lisdahl29, Michael E. Charness30, Michael E. Charness31, Michael E. Charness15, Bernard F. Fuemmeler7, John M. Hettema7, Hermine H. Maes7, Joel L. Steinberg7, Andrey P. Anokhin6, Paul E.A. Glaser6, Andrew C. Heath6, Pamela A. F. Madden6, Arielle R. Baskin-Sommers5, R. Todd Constable5, Steven Grant11, Gayathri J. Dowling11, Sandra A. Brown1, Terry L. Jernigan1, Anders M. Dale1 
TL;DR: The baseline neuroimaging processing and subject-level analysis methods used by the Adolescent Brain Cognitive Development Study are described to be a resource of unprecedented scale and depth for studying typical and atypical development.

431 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1237 moreInstitutions (131)
TL;DR: In this paper, the authors place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime of a binary neutron star inspiral.
Abstract: The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.

430 citations


Journal ArticleDOI
TL;DR: The Zwicky Transient Facility (ZTF) is a new robotic time-domain survey currently in progress using the Palomar 48-inch Schmidt Telescope, and the Science Data System that is housed at IPAC, Caltech is described.
Abstract: The Zwicky Transient Facility (ZTF) is a new robotic time-domain survey currently in progress using the Palomar 48-inch Schmidt Telescope. ZTF uses a 47 square degree field with a 600 megapixel camera to scan the entire northern visible sky at rates of ~3760 square degrees/hour to median depths of g ~ 20.8 and r ~ 20.6 mag (AB, 5sigma in 30 sec). We describe the Science Data System that is housed at IPAC, Caltech. This comprises the data-processing pipelines, alert production system, data archive, and user interfaces for accessing and analyzing the products. The realtime pipeline employs a novel image-differencing algorithm, optimized for the detection of point source transient events. These events are vetted for reliability using a machine-learned classifier and combined with contextual information to generate data-rich alert packets. The packets become available for distribution typically within 13 minutes (95th percentile) of observation. Detected events are also linked to generate candidate moving-object tracks using a novel algorithm. Objects that move fast enough to streak in the individual exposures are also extracted and vetted. The reconstructed astrometric accuracy per science image with respect to Gaia is typically 45 to 85 milliarcsec. This is the RMS per axis on the sky for sources extracted with photometric S/N >= 10. The derived photometric precision (repeatability) at bright unsaturated fluxes varies between 8 and 25 millimag. Photometric calibration accuracy with respect to Pan-STARRS1 is generally better than 2%. The products support a broad range of scientific applications: fast and young supernovae, rare flux transients, variable stars, eclipsing binaries, variability from active galactic nuclei, counterparts to gravitational wave sources, a more complete census of Type Ia supernovae, and Solar System objects.

Journal ArticleDOI
Benetge Perera1, Benetge Perera2, Megan E. DeCesar3, Paul Demorest4, Matthew Kerr5, L. Lentati, David J. Nice3, Stefan Oslowski6, Scott M. Ransom4, Michael Keith1, Zaven Arzoumanian7, Matthew Bailes6, P. T. Baker8, C. G. Bassa9, N. D. R. Bhat10, A. Brazier11, M. Burgay12, Sarah Burke-Spolaor13, Sarah Burke-Spolaor8, R. N. Caballero14, D. J. Champion15, Sourav Chatterjee11, Siyuan Chen, Ismaël Cognard16, Ismaël Cognard17, James M. Cordes11, Kathryn Crowter18, Shi Dai19, Gregory Desvignes15, Gregory Desvignes20, Timothy Dolch21, Robert D. Ferdman22, Elizabeth C. Ferrara23, Elizabeth C. Ferrara7, Emmanuel Fonseca24, Janna Goldstein25, E. Graikou15, Lucas Guillemot16, Lucas Guillemot17, Jeffrey S. Hazboun26, George Hobbs19, H. Hu15, K. Islo27, Gemma H. Janssen28, Gemma H. Janssen9, Ramesh Karuppusamy15, Michael Kramer1, Michael Kramer15, Michael T. Lam8, Kejia Lee14, Kang Liu15, Jing Luo29, Andrew Lyne1, Richard N. Manchester19, J. W. McKee1, J. W. McKee15, Maura McLaughlin8, Chiara M. F. Mingarelli30, Aditya Parthasarathy6, Timothy T. Pennucci31, Delphine Perrodin12, A. Possenti12, A. Possenti32, Daniel J. Reardon6, Christopher J. Russell33, S. A. Sanidas1, Alberto Sesana34, G. Shaifullah9, Ryan Shannon6, X. Siemens35, X. Siemens27, Joseph Simon36, Renée Spiewak6, Ingrid H. Stairs18, Benjamin Stappers1, J. K. Swiggum27, Stephen Taylor37, Stephen Taylor36, Gilles Theureau17, Gilles Theureau20, Gilles Theureau16, Caterina Tiburzi9, Michele Vallisneri36, Alberto Vecchio25, J. B. Wang38, Songbo Zhang38, Lei Zhang19, Lei Zhang38, Weiwei Zhu15, Weiwei Zhu38, Xing-Jiang Zhu39 
TL;DR: In this article, the authors describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsars Timing array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes pulsar timing array, and find that the timing precisions of pulsars are generally improved compared to the previous data release.
Abstract: In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.

Journal ArticleDOI
Matthew J. Graham1, Shrinivas R. Kulkarni1, Eric C. Bellm2, Scott M. Adams1, Cristina Barbarino3, Nadejda Blagorodnova1, Dennis Bodewits4, Dennis Bodewits5, Bryce Bolin2, Patrick Brady6, S. Bradley Cenko7, S. Bradley Cenko4, Chan-Kao Chang8, Michael W. Coughlin1, Kaushik De1, Gwendolyn Eadie2, Tony L. Farnham4, Ulrich Feindt3, Anna Franckowiak, Christoffer Fremling1, Suvi Gezari4, Suvi Gezari7, Sourav Ghosh6, Daniel A. Goldstein1, V. Zach Golkhou2, Ariel Goobar3, Anna Y. Q. Ho1, Daniela Huppenkothen2, Željko Ivezić2, R. Lynne Jones2, Mario Juric2, David L. Kaplan6, Mansi M. Kasliwal1, Michael S. P. Kelley4, Thomas Kupfer1, Thomas Kupfer9, Chien De Lee8, Hsing Wen Lin10, Hsing Wen Lin8, Ragnhild Lunnan3, Ashish Mahabal1, Adam A. Miller11, Adam A. Miller12, Chow-Choong Ngeow8, Peter Nugent13, Peter Nugent14, Eran O. Ofek15, Thomas A. Prince1, L. Rauch, Jan van Roestel16, Steve Schulze15, Leo Singer4, Leo Singer7, Jesper Sollerman3, Francesco Taddia3, Lin Yan1, Quanzhi Ye1, Po-Chieh Yu8, Tom A. Barlow1, James Bauer4, Ron Beck1, Justin Belicki1, Rahul Biswas3, V. Brinnel17, Tim Brooke1, Brian D. Bue1, Mattia Bulla3, Rick Burruss1, Andrew J. Connolly2, John Cromer1, Virginia Cunningham4, Richard Dekany1, Alex Delacroix1, Vandana Desai1, Dmitry A. Duev1, Michael Feeney1, David Flynn1, Sara Frederick4, Avishay Gal-Yam15, Matteo Giomi17, Steven Groom1, Eugean Hacopians1, David Hale1, George Helou1, John Henning1, David Hover1, Lynne A. Hillenbrand1, Justin Howell1, Tiara Hung4, David Imel1, Wing-Huen Ip18, Wing-Huen Ip8, Edward Jackson1, Shai Kaspi19, Stephen Kaye1, Marek Kowalski17, E. A. Kramer1, Michael A. Kuhn1, Walter Landry1, Russ R. Laher1, Peter H. Mao1, Frank J. Masci1, Serge Monkewitz1, Patrick J. Murphy1, Jakob Nordin17, Maria T. Patterson2, Bryan E. Penprase20, Michael Porter1, Umaa Rebbapragada1, Daniel J. Reiley1, Reed Riddle1, Mickael Rigault21, Hector Rodriguez1, Ben Rusholme1, J. V. Santen, David L. Shupe1, Roger M. H. Smith1, Maayane T. Soumagnac15, Robert Stein, Jason Surace1, Paula Szkody2, Scott Terek1, Angela Van Sistine6, Sjoert van Velzen4, W. Thomas Vestrand22, Richard Walters1, Charlotte Ward4, Chaoran Zhang6, Jeffry Zolkower1 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time.
Abstract: The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r ~ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects.

Journal ArticleDOI
TL;DR: Pulsar timing array (PTA) collaborations in North America, Australia, and Europe have been exploiting the exquisite timing precision of millisecond pulsars over decades of observations to search for correlated timing deviations induced by gravitational waves (GWs).
Abstract: Pulsar timing array (PTA) collaborations in North America, Australia, and Europe, have been exploiting the exquisite timing precision of millisecond pulsars over decades of observations to search for correlated timing deviations induced by gravitational waves (GWs). PTAs are sensitive to the frequency band ranging just below 1 nanohertz to a few tens of microhertz. The discovery space of this band is potentially rich with populations of inspiraling supermassive black hole binaries, decaying cosmic string networks, relic post-inflation GWs, and even non-GW imprints of axionic dark matter. This article aims to provide an understanding of the exciting open science questions in cosmology, galaxy evolution, and fundamental physics that will be addressed by the detection and study of GWs through PTAs. The focus of the article is on providing an understanding of the mechanisms by which PTAs can address specific questions in these fields, and to outline some of the subtleties and difficulties in each case. The material included is weighted most heavily toward the questions which we expect will be answered in the near-term with PTAs; however, we have made efforts to include most currently anticipated applications of nanohertz GWs.

Journal ArticleDOI
TL;DR: The challenges of DC microgrid protection are investigated from various aspects including, dc fault current characteristics, ground systems, fault detection methods, protective devices, and fault location methods.
Abstract: DC microgrids have attracted significant attention over the last decade in both academia and industry. DC microgrids have demonstrated superiority over AC microgrids with respect to reliability, efficiency, control simplicity, integration of renewable energy sources, and connection of dc loads. Despite these numerous advantages, designing and implementing an appropriate protection system for dc microgrids remains a significant challenge. The challenge stems from the rapid rise of dc fault current which must be extinguished in the absence of naturally occurring zero crossings, potentially leading to sustained arcs. In this paper, the challenges of DC microgrid protection are investigated from various aspects including, dc fault current characteristics, ground systems, fault detection methods, protective devices, and fault location methods. In each part, a comprehensive review has been carried out. Finally, future trends in the protection of DC microgrids are briefly discussed.

Journal ArticleDOI
Madeline H. Kowalski1, Huijun Qian1, Ziyi Hou2, Jonathan D. Rosen1, Amanda L. Tapia1, Yue Shan1, Deepti Jain3, Maria Argos4, Donna K. Arnett5, Christy L. Avery1, Kathleen C. Barnes6, Lewis C. Becker7, Stephanie A. Bien8, Joshua C. Bis3, John Blangero9, Eric Boerwinkle10, Donald W. Bowden11, Steve Buyske12, Jianwen Cai1, Michael H. Cho2, Michael H. Cho13, Seung Hoan Choi14, Hélène Choquet15, L. Adrienne Cupples16, Mary Cushman17, Michelle Daya6, Paul S. de Vries10, Patrick T. Ellinor2, Patrick T. Ellinor14, Nauder Faraday7, Myriam Fornage10, Stacey Gabriel14, Santhi K. Ganesh18, Misa Graff1, Namrata Gupta14, Jiang He19, Susan R. Heckbert3, Susan R. Heckbert15, Bertha Hidalgo20, Chani J. Hodonsky1, Marguerite R. Irvin20, Andrew D. Johnson, Eric Jorgenson15, Robert C. Kaplan21, Sharon L.R. Kardia18, Tanika N. Kelly19, Charles Kooperberg8, Jessica Lasky-Su13, Jessica Lasky-Su2, Ruth J. F. Loos22, Steven A. Lubitz14, Steven A. Lubitz2, Rasika A. Mathias7, Caitlin P. McHugh3, Courtney G. Montgomery23, Jee-Young Moon21, Alanna C. Morrison10, Nicholette D. Palmer11, Nathan Pankratz24, George Papanicolaou, Juan M. Peralta9, Patricia A. Peyser18, Stephen S. Rich25, Jerome I. Rotter26, Edwin K. Silverman2, Edwin K. Silverman13, Jennifer A. Smith18, Nicholas L. Smith3, Nicholas L. Smith27, Nicholas L. Smith15, Kent D. Taylor26, Timothy A. Thornton3, Hemant K. Tiwari20, Russell P. Tracy17, Tao Wang21, Scott T. Weiss2, Scott T. Weiss13, Lu-Chen Weng14, Kerri L. Wiggins3, James G. Wilson28, Lisa R. Yanek7, Sebastian Zöllner18, Kari E. North1, Paul L. Auer29, Laura M. Raffield1, Alex P. Reiner3, Yun Li1 
TL;DR: It is demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data, which subsequently enhanced gene-mapping power for complex traits.
Abstract: Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) 86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.

Journal ArticleDOI
Maya Fishbach1, R. Gray2, I. Magaña Hernandez3, H. Qi3  +322 moreInstitutions (52)
TL;DR: In this paper, a statistical standard siren analysis of GW170817 is presented, which considers all galaxies brighter than 0.626{L}_{B}^{\star }$ as equally likely to host a binary neutron star merger.
Abstract: We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we consider each galaxy within the GW170817 localization region as a potential host; combining the redshifts from all of the galaxies with the distance estimate from GW170817 provides an estimate of the Hubble constant, H 0. Considering all galaxies brighter than $0.626{L}_{B}^{\star }$ as equally likely to host a binary neutron star merger, we find ${H}_{0}={77}_{-18}^{+37}$ km s−1 Mpc−1 (maximum a posteriori and 68.3% highest density posterior interval; assuming a flat H 0 prior in the range $\left[10,220\right]$ km s−1 Mpc−1). We explore the dependence of our results on the thresholds by which galaxies are included in our sample, and we show that weighting the host galaxies by stellar mass or star formation rate provides entirely consistent results with potentially tighter constraints. By applying the method to simulated gravitational-wave events and a realistic galaxy catalog we show that, because of the small localization volume, this statistical standard siren analysis of GW170817 provides an unusually informative (top 10%) constraint. Under optimistic assumptions for galaxy completeness and redshift uncertainty, we find that dark binary neutron star measurements of H 0 will converge as $40 \% /\sqrt{(N)}$, where N is the number of sources. While these statistical estimates are inferior to the value from the counterpart standard siren measurement utilizing NGC 4993 as the unique host, ${H}_{0}={76}_{-13}^{+19}$ km s−1 Mpc−1 (determined from the same publicly available data), our analysis is a proof-of-principle demonstration of the statistical approach first proposed by Bernard Schutz over 30 yr ago.

Journal ArticleDOI
TL;DR: In this paper, the authors analyze and explain the lake desiccation based on other observed hydro-climatic and vegetation changes in the Lake Urmia watershed and classical exploratory statistical methods.

Journal ArticleDOI
TL;DR: The Energy Exascale Earth System Model Atmosphere Model version 1, the atmospheric component of the Department of Energy's Energy Extase Earth System model, is described in this paper.
Abstract: Author(s): Rasch, PJ; Xie, S; Ma, PL; Lin, W; Wang, H; Tang, Q; Burrows, SM; Caldwell, P; Zhang, K; Easter, RC; Cameron-Smith, P; Singh, B; Wan, H; Golaz, JC; Harrop, BE; Roesler, E; Bacmeister, J; Larson, VE; Evans, KJ; Qian, Y; Taylor, M; Leung, LR; Zhang, Y; Brent, L; Branstetter, M; Hannay, C; Mahajan, S; Mametjanov, A; Neale, R; Richter, JH; Yoon, JH; Zender, CS; Bader, D; Flanner, M; Foucar, JG; Jacob, R; Keen, N; Klein, SA; Liu, X; Salinger, AG; Shrivastava, M; Yang, Y | Abstract: The Energy Exascale Earth System Model Atmosphere Model version 1, the atmospheric component of the Department of Energy's Energy Exascale Earth System Model is described. The model began as a fork of the well-known Community Atmosphere Model, but it has evolved in new ways, and coding, performance, resolution, physical processes (primarily cloud and aerosols formulations), testing and development procedures now differ significantly. Vertical resolution was increased (from 30 to 72 layers), and the model top extended to 60 km (~0.1 hPa). A simple ozone photochemistry predicts stratospheric ozone, and the model now supports increased and more realistic variability in the upper troposphere and stratosphere. An optional improved treatment of light-absorbing particle deposition to snowpack and ice is available, and stronger connections with Earth system biogeochemistry can be used for some science problems. Satellite and ground-based cloud and aerosol simulators were implemented to facilitate evaluation of clouds, aerosols, and aerosol-cloud interactions. Higher horizontal and vertical resolution, increased complexity, and more predicted and transported variables have increased the model computational cost and changed the simulations considerably. These changes required development of alternate strategies for tuning and evaluation as it was not feasible to “brute force” tune the high-resolution configurations, so short-term hindcasts, perturbed parameter ensemble simulations, and regionally refined simulations provided guidance on tuning and parameterization sensitivity to higher resolution. A brief overview of the model and model climate is provided. Model fidelity has generally improved compared to its predecessors and the CMIP5 generation of climate models.

Journal ArticleDOI
TL;DR: In this article, a numerical relativity (NR) based approximation for the tidal part of the phasing was proposed for nonprecessing and precessing binary black hole systems, as implemented in the LSC Algorithm Library Suite.
Abstract: The combined observation of gravitational and electromagnetic waves from the coalescence of two neutron stars marks the beginning of multimessenger astronomy with gravitational waves (GWs). The development of accurate gravitational waveform models is a crucial prerequisite to extract information about the properties of the binary system that generated a detected GW signal. In binary neutron star systems (BNS), tidal effects also need to be incorporated in the modeling for an accurate waveform representation. Building on previous work [Phys. Rev. D 96, 121501 (2017)], we explore the performance of inspiral-merger waveform models that are obtained by adding a numerical relativity (NR) based approximant for the tidal part of the phasing ($\mathrm{NRTidal}$) to existing models for nonprecessing and precessing binary black hole systems, as implemented in the LSC Algorithm Library Suite. The resulting BNS waveforms are compared and contrasted to a set of target waveforms which we obtain by hybridizing NR waveforms (covering the last $\ensuremath{\sim}10$ orbits up to the merger and extending through the postmerger phase) with inspiral waveforms calculated from 30 Hz obtained with a state-of-the-art effective-one-body waveform model. While due to the construction procedure of the target waveforms, there is no error budget available over the full frequency range accessible by advanced GW detectors, the waveform set presents only an approximation of the real signal. We probe that the combination of the self-spin terms and of the $\mathrm{NRTidal}$ description is necessary to obtain minimal mismatches ($\ensuremath{\lesssim}0.01$) and phase differences ($\ensuremath{\lesssim}1\text{ }\text{ }\mathrm{rad}$) with respect to the target waveforms. We also discuss possible improvements and drawbacks of the $\mathrm{NRTidal}$ approximant in its current form.

Journal ArticleDOI
Marcelle Soares-Santos1, Antonella Palmese2, W. G. Hartley3, J. Annis2  +1285 moreInstitutions (156)
TL;DR: In this article, a multi-messenger measurement of the Hubble constant H 0 using the binary-black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES), is presented.
Abstract: We present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in ${H}_{0}={75}_{-32}^{+40}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1}$, which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find ${H}_{0}={78}_{-24}^{+96}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1}$ (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0.

Journal ArticleDOI
TL;DR: In order to facilitate energy sharing and improve system flexibility, a hybrid energy sharing framework of multiple microgrids (MGs) is proposed for a heat–electricity integrated energy system with combined heat and power (CHP) and demand response.
Abstract: In order to facilitate energy sharing and improve system flexibility, a hybrid energy sharing framework of multiple microgrids (MGs) is proposed for a heat–electricity integrated energy system with combined heat and power (CHP) and demand response. First, considering the multi-timescale characteristics, an electrical and thermal energy sharing model of interconnected MGs with CHP and photovoltaic systems is built, in which CHP can operate in a hybrid mode by selecting the operating point flexibly. Moreover, the local subproblem of each MG is formulated and solved considering a comprehensive set of factors, including the generating heat and power cost, trading cost with utility grid, trading electrical and thermal energy cost with other MGs, load characteristic, power consumption utility, and thermal discomfort cost. In addition, a distributed optimization algorithm is used to solve the hybrid energy sharing problem, where the electrical and thermal energy prices can be obtained. Finally, the effectiveness of the proposed energy sharing method is demonstrated by a case study simulation.

Journal ArticleDOI
TL;DR: The intention and hopeful expectation is that the content presented serves as a call to action for psychologists to make psychology a Sanctuary Discipline by using and integrating intersectionality theory, trauma-informed care, and Liberation Psychology into policy, research, and practice with Latinx immigrants.
Abstract: Latinx immigrants living in the United States often experience the negative effects of systemic oppression, which may lead to psychological distress, including ethno-racial trauma. We define ethno-racial trauma as the individual and/or collective psychological distress and fear of danger that results from experiencing or witnessing discrimination, threats of harm, violence, and intimidation directed at ethno-racial minority groups. This form of trauma stems from a legacy of oppressive laws, policies, and practices. Using an intersectionality framework, this article discusses the complex ways in which interlocking systems of oppression (e.g., racism, ethnocentrism, nativism, sexism) and anti-immigrant policies impact Latinxs individuals, families, and communities. The article also presents a framework to stimulate healing from ethno-racial trauma titled, HEART (Healing Ethno And Racial Trauma). Grounded in the principles of Liberation Psychology and trauma-informed care, the framework is composed of four phases. Each phase is accompanied by a goal to assist clinicians in helping individuals, families, and communities to achieve growth, wellness, and healing. The main objective of each phase is for Latinx immigrants to find relief, gain awareness, and cope with systemic oppression while encouraging resistance and protection from the external forces that cause ethno-racial trauma. Overall, our intention and hopeful expectation is that the content presented in this article serves as a call to action for psychologists to make psychology a Sanctuary Discipline by using and integrating intersectionality theory, trauma-informed care, and Liberation Psychology into policy, research, and practice with Latinx immigrants. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1222 moreInstitutions (135)
TL;DR: In this article, the results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast spinning neutron stars with an asymmetry around their rotation axis, were presented.
Abstract: We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. Three different semicoherent methods are used to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from -1×10-8 to 2×10-9 Hz/s. None of these searches has found clear evidence for a CW signal, so upper limits on the gravitational-wave strain amplitude are calculated, which for this broad range in parameter space are the most sensitive ever achieved.

Journal ArticleDOI
31 Oct 2019-Cell
TL;DR: The largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from rural Uganda, finds evidence of geographically correlated fine-scale population substructure.

Journal ArticleDOI
TL;DR: A heterogeneous association graph is constructed that fuses high-level detections and low-level image evidence for target association and the novel idea of adaptive weights is proposed to analyze the contribution between motion and appearance.
Abstract: Tracking-by-detection is one of the most popular approaches to tracking multiple objects in which the detector plays an important role. Sometimes, detector failures caused by occlusions or various poses are unavoidable and lead to tracking failure. To cope with this problem, we construct a heterogeneous association graph that fuses high-level detections and low-level image evidence for target association. Compared with other methods using low-level information, our proposed heterogeneous association fusion (HAF) tracker is less sensitive to particular parameters and is easier to extend and implement. We use the fused association graph to build track trees for HAF and solve them by the multiple hypotheses tracking framework, which has been proven to be competitive by introducing efficient pruning strategies. In addition, the novel idea of adaptive weights is proposed to analyze the contribution between motion and appearance. We also evaluated our results on the MOT challenge benchmarks and achieved state-of-the-art results on the MOT Challenge 2017.

Journal ArticleDOI
TL;DR: In the cooperative trading framework, a real-time rolling horizon energy management model is proposed based on cooperative game theory considering the stochastic characteristics of PV prosumers and the conditional value at risk (CVaR) and it is transformed into a more easily resolved mixed integer linear programming (MILP) model by adding auxiliary variables.
Abstract: The concept of energy hub (EH) was proposed to facilitate the synergies among different forms of energy carriers. Under the new electricity market environment, it is of great significance to build a win–win situation for prosumers and the hub manager (HM) at the community level without bringing extra burden to the utility grid. This paper proposes a cooperative trading mode for a community-level energy system (CES), which consists of the energy hub and PV prosumers with the automatic demand response (DR) capability. In the cooperative trading framework, a real-time rolling horizon energy management model is proposed based on cooperative game theory considering the stochastic characteristics of PV prosumers and the conditional value at risk (CVaR). The validity of the proposed model is analyzed through optimality proof of the grand coalition. A contribution-based profit distribution scheme and its stability proof are also provided. Moreover, in order to solve the optimization model, it is further transformed into a more easily resolved mixed integer linear programming (MILP) model by adding auxiliary variables. Finally, via a practical example, the effectiveness of the model is verified in terms of promoting local consumption of PV energy, increasing HM's profits, and reducing prosumers’ costs, etc.

Journal ArticleDOI
TL;DR: In this article, the authors searched the North American Nanohertz Observatory for Gravitational Waves 11 yr data set for GWs from individual SMBHBs in circular orbits, and placed 95% upper limits on the strength of GWs coming from such sources.
Abstract: Observations indicate that nearly all galaxies contain supermassive black holes at their centers. When galaxies merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves (GWs) that can be detected by pulsar timing arrays. We have searched the North American Nanohertz Observatory for Gravitational Waves 11 yr data set for GWs from individual SMBHBs in circular orbits. As we did not find strong evidence for GWs in our data, we placed 95% upper limits on the strength of GWs from such sources. At f(gw) = 8 nHz, we placed a sky-averaged upper limit of h(0) 1.6 x 10(exp 9) Solar Mass emitting GWs with f(gw) = 2.8–317.8 nHz in the Virgo Cluster. Finally, we compared our strain upper limits to simulated populations of SMBHBs, based on galaxies in the Two Micron All-Sky Survey and merger rates from the Illustris cosmological simulation project, and found that only 34 out of 75,000 realizations of the local universe contained a detectable source.

Posted ContentDOI
Haoyu Zhang1, Haoyu Zhang2, Thomas U. Ahearn2, Julie Lecarpentier3  +309 moreInstitutions (124)
24 Sep 2019-bioRxiv
TL;DR: A genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers of European ancestry provides an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
Abstract: Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study (GWAS) including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status and tumor grade. We identified 32 novel susceptibility loci (P

Journal ArticleDOI
Michael W. Coughlin1, Tomas Ahumada2, Shreya Anand1, Kaushik De1, M. Hankins1, Mansi M. Kasliwal1, Leo Singer3, Leo Singer2, Eric C. Bellm4, Igor Andreoni1, S. Bradley Cenko3, S. Bradley Cenko2, Jeff Cooke5, Chris M. Copperwheat6, Alison Dugas1, Jacob E. Jencson1, Daniel A. Perley6, Po-Chieh Yu7, Varun Bhalerao8, Harsh Kumar8, Joshua S. Bloom9, Joshua S. Bloom10, G. C. Anupama11, Michael C. B. Ashley12, Ashot Bagdasaryan1, Rahul Biswas13, David A. H. Buckley, Kevin B. Burdge1, David O. Cook1, John Cromer1, Virginia Cunningham2, Antonino D'Ai14, Richard Dekany1, Alexandre Delacroix1, S. Dichiara3, S. Dichiara2, Dmitry A. Duev1, Anirban Dutta11, Michael Feeney1, Sara Frederick2, Pradip Gatkine2, Sourav Ghosh15, Daniel A. Goldstein1, V. Zach Golkhou4, Ariel Goobar13, Matthew J. Graham1, H. Hanayama16, Takashi Horiuchi16, Tiara Hung17, Saurabh Jha18, Albert K. H. Kong19, Matteo Giomi20, David L. Kaplan15, V. Karambelkar8, Marek Kowalski20, Shrinivas R. Kulkarni1, Thomas Kupfer21, Frank J. Masci1, Paolo A. Mazzali6, Anna M. Moore22, Moses Mogotsi, James D. Neill1, Chow-Choong Ngeow7, Jorge Martínez-Palomera10, Valentina La Parola14, M. Pavana11, Eran O. Ofek23, Atharva Sunil Patil7, Reed Riddle1, Mickael Rigault, Ben Rusholme1, Eugene Serabyn1, David L. Shupe1, Y. Sharma8, Avinash Singh11, Jesper Sollerman13, J. Soon22, Kai Staats24, Kirsty Taggart6, Hanjie Tan7, Tony Travouillon22, Eleonora Troja3, Eleonora Troja2, G. Waratkar8, Yoichi Yatsu25 
TL;DR: In this article, the authors performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes.
Abstract: The third observing run by LVC has brought the discovery of many compact binary coalescences. Following the detection of the first binary neutron star merger in this run (LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. The initial skymap of this single-detector gravitational wave (GW) trigger spanned most of the sky observable from Palomar Observatory. Covering 8000 deg2 of the initial skymap over the next two nights, corresponding to 46% integrated probability, ZTF system achieved a depth of ≈21 m AB in g- and r-bands. Palomar Gattini-IR covered 2200 square degrees in J-band to a depth of 15.5 mag, including 32% integrated probability based on the initial skymap. The revised skymap issued the following day reduced these numbers to 21% for the ZTF and 19% for Palomar Gattini-IR. We narrowed 338,646 ZTF transient "alerts" over the first two nights of observations to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod, were particularly compelling given that their location, distance, and age were consistent with the GW event, and their early optical light curves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were ruled out as supernovae. Palomar Gattini-IR did not identify any viable candidates with multiple detections only after merger time. We demonstrate that even with single-detector GW events localized to thousands of square degrees, systematic kilonova discovery is feasible.