scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
TL;DR: One of the largest studies ever conducted on lianas is used to confirm the negative effects of lianaas on tree growth and survival over 10 years, and liana infestation of trees was widespread, dynamic and increasing on BCI.
Abstract: Summary 1. Lianas compete intensely with trees, but few studies have examined long-term effects of liana infestation on tree growth and mortality. We quantified the effects of lianas in tree crowns (n = 2907) and rooted within 2 m of trees (n = 1086) on growth and mortality of 30 tree species from 1995 to 2005 on Barro Colorado Island (BCI), Panama, documented liana infestation in tree crowns in 1996 and 2007 to determine the dynamics of liana infestation, and quantified liana infestation in the crowns of 3231 additional canopy trees (d.b.h. ‡20 cm) in 2007 to compare with the same metric determined by previous studies in 1967 and 1980. 2. Severe liana infestation increased tree mortality: 21% of liana-free trees in 1996 had died by 2007, whereas 42% of trees with more than 75% of the crown infested by lianas in 1996 had died by 2007. 3. Liana infestation of tree crowns significantly reduced tree growth, particularly on sun-exposed trees. The proximity of rooted lianas significantly reduced the growth of shaded trees. 4. Liana infestation was dynamic: 10.9% of trees with severe liana infestation in their crowns in 1996 had shed all of their lianas by 2007 and 5.3% of trees with no lianas in their crown in 1996 had severe liana infestation in 2007. 5. Liana infestation was common: lianas were present in 53% of trees of the 30 focal species. Including lianas rooted within 2 m of the tree increased this percentage to 78%. Using both aboveand below-ground measures may provide a better estimate of liana competition than either measure alone. 6. Liana infestation is increasing on BCI. Lianas were present in the crowns of 73.6% of canopy trees (d.b.h. ‡20 cm). Liana canopy infestation was 57% higher than in 1980 and 65% higher than in 1967, which is consistent with reported increases in liana abundance, biomass, and leaf and flower production. 7. Synthesis. We used one of the largest studies ever conducted on lianas to confirm the negative effects of lianas on tree growth and survival over 10 years. Liana infestation of trees was widespread, dynamic and increasing on BCI.

236 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the physics of pair-density wave superconductors and discuss the order induced by PDW states, such as charge density wave, and discuss relativities.
Abstract: We review the physics of pair-density wave (PDW) superconductors. We begin with a macroscopic description that emphasizes order induced by PDW states, such as charge-density wave, and discuss relat...

235 citations

Journal ArticleDOI
TL;DR: In this paper, the optimal behavior of a multinational firm's subsidiary in a host country when learning of its production techniques by its native rivals is examined, and it is shown that it is worthwhile for the subsidiary to import better technology from its parent firm and that such technology transfer may not benefit the firms of the host country despite their learning.

235 citations

Journal ArticleDOI
TL;DR: Results demonstrate overlapping patterns of activation within the anterior cingulate, medial thalamus, and visual cortex during delay and trace procedures, with additional recruitment of the hippocampus, SMA, frontal operculum, middle frontal gyrus, and inferior parietal lobule during trace conditioning.
Abstract: Previous functional magnetic resonance imaging (fMRI) studies with human subjects have explored the neural substrates involved in forming associations in Pavlovian fear conditioning. Most of these studies used delay procedures, in which the conditioned stimulus (CS) and unconditioned stimulus (UCS) coterminate. Less is known about brain regions that support trace conditioning, a procedure in which an interval of time (trace interval) elapses between CS termination and UCS onset. Previous work suggests significant overlap in the neural circuitry supporting delay and trace fear conditioning, although trace conditioning requires recruitment of additional brain regions. In the present event-related fMRI study, skin conductance and continuous measures of UCS expectancy were recorded concurrently with whole-brain blood oxygenation level-dependent (BOLD) imaging during direct comparison of delay and trace discrimination learning. Significant activation was observed within the visual cortex for all CSs. Anterior cingulate and medial thalamic activity reflected associative learning common to both delay and trace procedures. Activations within the supplementary motor area (SMA), frontal operculum, middle frontal gyri, and inferior parietal lobule were specifically associated with trace interval processing. The hippocampus displayed BOLD signal increases early in training during all conditions; however, differences were observed in hippocampal response magnitude related to the accuracy of predicting UCS presentations. These results demonstrate overlapping patterns of activation within the anterior cingulate, medial thalamus, and visual cortex during delay and trace procedures, with additional recruitment of the hippocampus, SMA, frontal operculum, middle frontal gyrus, and inferior parietal lobule during trace conditioning. These data suggest that the hippocampus codes temporal information during trace conditioning, whereas brain regions supporting working memory processes maintain the CS-UCS representation during the trace interval.

235 citations

Journal ArticleDOI
TL;DR: It is suggested that below-ground competition with lianas plays a substantial role in limiting the growth of saplings in disturbed and secondary tropical forests, and above-ground effects may be due to a combination of above-Ground competition and mechanical stress.
Abstract: 1 Light is thought to be the most limiting resource in tropical forests, and thus aboveground competition is commonly accepted as the mechanism that structures these communities. In many tropical forests, trees compete not only with other trees, but also with lianas, which compete aggressively for below-ground resources and thus may limit tree growth and regeneration. 2 Using a replicated experiment, we tested the relative strengths of above- and belowground competition from lianas on tree saplings in a disturbed forest in Cote d?Ivoire with a heterogeneous canopy and relatively high light penetration. We planted seedlings of three tree species and subjected them to below-ground competition with lianas (BGC), above- and below-ground competition with lianas (ABGC), or a liana-free control treatment. After 2 years, we harvested the saplings and compared the amount of above-ground biomass and its relative allocation among the three experimental treatments and different tree species. 3 Lianas competed intensely with saplings in this tropical forest, substantially limiting sapling growth. Saplings grown in the ABGC and BGC treatments had only 18.5% and 16.8% of the above-ground dry biomass of those grown in the liana-free control treatment. 4 Sapling biomass did not differ significantly among the ABGC and BGC treatments, suggesting that below-ground competition was the driving force behind liana vs. tree competition in this forest. Above-ground competition with lianas, however, did affect the allocation of biomass in saplings, resulting in shorter, thicker stems and a poorly developed crown. 5 Collectively, our findings suggest that below-ground competition with lianas plays a substantial role in limiting the growth of saplings in disturbed and secondary tropical forests, and above-ground effects may be due to a combination of above-ground competition and mechanical stress. 6 Disentangling above- and below-ground competition between lianas and trees is critical for a comprehensive understanding of the dynamics of naturally regenerating tropical forests, as well as formulating successful management plans for sustainable timber harvest. Key-words: above-ground, below-ground, competition, Cote d?Ivoire, forest regeneration, lianas, trees, tropical forest

235 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141