scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that a broad class of anisotropic 2D materials can host highly directional hyperbolic plasmons and their propagation direction can be manipulated on the spot by gate doping, enablinghyperbolic beam reflection, refraction, and bending.
Abstract: Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

227 citations

Journal ArticleDOI
TL;DR: Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces and genes predicted to encode components of a multienzyme nonribosomal peptide synthetase, as were novel aspects of gene regulation.
Abstract: The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae (phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the "motor" and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins, and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138 glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments. Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae.

226 citations

Journal ArticleDOI
TL;DR: The capacity of a decision unit to induce innovation implementation within an adoption unit is crucial to organizational success as mentioned in this paper, and the interaction of these factors can determine the degree of successful innovation implementation.
Abstract: The capacity of a decision unit to induce innovation implementation within an adoption unit is crucial to organizational success. Risk and complexity are characteristics of innovations that can lead to resistance within organizational adoption units. Communication costs, types of power, and communication channels are structural characteristics that can be used by a decision unit to overcome this resistance. The interaction of these factors can determine the degree of successful innovation implementation within organizations.

226 citations

Journal ArticleDOI
TL;DR: This work demonstrates that bilby produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the 11 GWTC-1 signals.
Abstract: Gravitational waves provide a unique tool for observational astronomy. While the first LIGO–Virgo catalogue of gravitational-wave transients (GWTC-1) contains 11 signals from black hole and neutron star binaries, the number of observations is increasing rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible, and scalable inference techniques. In a previous paper, we introduced bilby: a modular and user-friendly Bayesian inference library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that bilby produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the 11 GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy reproduction, modification, and future use. This work establishes that bilby is primed and ready to analyse the rapidly growing population of compact binary coalescence gravitational-wave signals.

226 citations

Journal ArticleDOI
TL;DR: A linear least-squares curve-fitting algorithm was developed to efficiently extract the signal amplitudes of the lipoproteins from the plasma spectrum, which correlate well with lipoprotein concentrations determined by triglyceride and cholesterol measurements.
Abstract: A new analytical procedure for quantifying plasma lipoproteins by proton nuclear magnetic resonance (NMR) spectroscopy has been developed that potentially offers significant advantages over existing clinical methods used for assessing risk of coronary heart disease. Analysis of a single spectrum of a nonfasting plasma sample, acquired simply and rapidly at moderate magnetic field strength (250 MHz), yields a complete profile of lipoprotein concentrations: chylomicrons and very-low-, low-, and high-density lipoproteins. The method is based on curve-fitting (spectral deconvolution) of the plasma methyl lipid resonance envelope, the amplitude and shape of which depend directly on the amplitudes of the superimposed methyl resonances of the lipoprotein components. A linear least-squares curve-fitting algorithm was developed to efficiently extract the signal amplitudes (concentrations) of the lipoproteins from the plasma spectrum. These signal amplitudes correlate well with lipoprotein concentrations determined by triglyceride and cholesterol measurements.

226 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141