scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
24 May 2012-Nature
TL;DR: In this paper, the authors compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius).
Abstract: Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

751 citations

Journal ArticleDOI
TL;DR: The 2D ternary nanojunction exhibits significantly enhanced photoelectrochemical and photocatalytic activities due to the large contact area, efficient light absorption, and rapid charge separation and transport.
Abstract: A 2D porous graphitic C3 N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction is synthesized using a simple pyrolysis process followed by a hydrothermal treatment. The 2D ternary nanojunction exhibits significantly enhanced photoelectrochemical and photocatalytic activities due to the large contact area, efficient light absorption, and rapid charge separation and transport.

750 citations

Journal ArticleDOI
TL;DR: In this paper, the authors suggest ways in which top managers can help themselves learn to avoid crisis through continuous unlearning, and suggest ways to help themselves to learn from crisis situations.
Abstract: Crises force organizations to replace top managers, so top managers should try to avoid crises through continuous unlearning. The authors suggest ways in which top managers can help themselves unlearn.

749 citations

Journal ArticleDOI
TL;DR: Qualitative examination of human brain autopsy material has shown that fragile-X patients exhibit abnormal dendritic spine lengths and shapes on parieto-occipital neocortical pyramidal cells, which may suggest a global failure of normal dendrites maturation and or pruning during development that persists throughout adulthood.
Abstract: Fragile-X syndrome is a common form of mental retardation resulting from the inability to produce the fragile-X mental retardation protein. Qualitative examination of human brain autopsy material has shown that fragile-X patients exhibit abnormal dendritic spine lengths and shapes on parieto-occipital neocortical pyramidal cells. Similar quantitative results have been obtained in fragile-X knockout mice, that have been engineered to lack the fragile-X mental retardation protein. Dendritic spines on layer V pyramidal cells of human temporal and visual cortices stained using the Golgi-Kopsch method were investigated. Quantitative analysis of dendritic spine length, morphology, and number was carried out on patients with fragile-X syndrome and normal age-matched controls. Fragile-X patients exhibited significantly more long dendritic spines and fewer short dendritic spines than did control subjects in both temporal and visual cortical areas. Similarly, fragile-X patients exhibited significantly more dendritic spines with an immature morphology and fewer with a more mature type morphology in both cortical areas. In addition, fragile-X patients had a higher density of dendritic spines than did controls on distal segments of apical and basilar dendrites in both cortical areas. Long dendritic spines with immature morphologies and elevated spine numbers are characteristic of early development or a lack of sensory experience. The fact that these characteristics are found in fragile-X patients throughout multiple cortical areas may suggest a global failure of normal dendritic spine maturation and or pruning during development that persists throughout adulthood.

746 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +961 moreInstitutions (100)
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Abstract: The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes (≳25M⊙) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than ∼1/2 of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳1Gpc−3yr−1) from both types of formation models. The low measured redshift (z∼0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either binary black-hole formation in a low-mass galaxy in the local Universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-black-hole formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and gravitational-wave detectors in space.

742 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141