scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors derived expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors, and the sensitivity levels required for detection are then calculated.
Abstract: We analyze the signal processing required for the optimal detection of a stochastic background of gravitational radiation using laser interferometric detectors. Starting with basic assumptions about the statistical properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels required for detection are then calculated. Issues related to (i) calculating the signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii) performing the data analysis in the presence of nonstationary detector noise, (iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search, (iv) correlating the outputs of 4 or more detectors, and (v) allowing for the possibility of correlated noise in the outputs of two detectors are discussed. We briefly describe a computer simulation that was used to ``experimentally'' verify the theoretical calculations derived in the paper, and which mimics the generation and detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous graphs and tables of numerical data for the five major interferometers (LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. This information consists of graphs of the noise power spectra, overlap reduction functions, and optimal filter functions; also included are tables of the signal-to-noise ratios and sensitivity levels for cross-correlation measurements between different detector pairs. The treatment given in this paper should be accessible to both theorists involved in data analysis and experimentalists involved in detector design and data acquisition.

562 citations

Proceedings ArticleDOI
24 Jun 2009
TL;DR: The state-of-the-art advancement in wind turbine condition monitoring and fault diagnosis for the recent several years is reviewed in this paper, where the impact of unsteady aerodynamic load on the robustness of diagnostic signatures has been notified.
Abstract: The state-of-the-art advancement in wind turbine condition monitoring and fault diagnosis for the recent several years is reviewed. Since the existing surveys on wind turbine condition monitoring cover the literatures up to 2006, this review aims to report the most recent advances in the past three years, with primary focus on gearbox and bearing, rotor and blades, generator and power electronics, as well as system-wise turbine diagnosis. There are several major trends observed through the survey. Due to the variable-speed nature of wind turbine operation and the unsteady load involved, time-frequency analysis tools such as wavelets have been accepted as a key signal processing tool for such application. Acoustic emission has lately gained much more attention in order to detect incipient failures because of the low-speed operation for wind turbines. There has been an increasing trend of developing model based reasoning algorithms for fault detection and isolation as cost-effective approach for wind turbines as relatively complicated system. The impact of unsteady aerodynamic load on the robustness of diagnostic signatures has been notified. Decoupling the wind load from condition monitoring decision making will reduce the associated down-time cost.

561 citations

Journal ArticleDOI
TL;DR: The measurement of the depth of maximum, X{max}, of the longitudinal development of air showers induced by cosmic rays is described and the interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.
Abstract: We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

558 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented FRB 121102, the first FRB discovery from a geographic location other than Parkes, which was found in the Galactic anti-center region in the 1.4?GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with a DM = 557.4? 2.0 pc cm?3, pulse width of 3.0? 0.5 ms, and no evidence of interstellar scattering.
Abstract: Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4?GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ? 2.0 pc cm?3, pulse width of 3.0 ? 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = ?0.?2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

558 citations

Journal ArticleDOI
TL;DR: A review of superhydrophobicity and related phenomena induced by surface micro-and nanostructuring is provided in this paper, where the classical approaches to superhydophobicity using the Young, Wenzel, and Cassie-Baxter models for the contact angle (CA) are presented.
Abstract: This paper provides a review of superhydrophobicity and related phenomena (superoleophobicity, omniphobicity, self-cleaning) induced by surface micro- and nanostructuring. The classical approaches to superhydrophobicity using the Young, Wenzel, and Cassie–Baxter models for the contact angle (CA) are presented. After that, the issues that are beyond the Wenzel and Cassie–Baxter theories are discussed, such as multiscale effects, 1D vs. 2D interactions, the effects of contact line, size of roughness details, curvature, and CA hysteresis dependence on roughness. New potential applications of superhydrophobicity are reviewed, such as new ways of energy transition, antifouling, and environment-friendly manufacturing.

557 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141