scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
Joris P. W. Verbiest1, Joris P. W. Verbiest2, L. Lentati, George Hobbs3, R. van Haasteren4, Paul Demorest5, Gemma H. Janssen, J. B. Wang6, Gregory Desvignes2, R. N. Caballero2, Michael Keith, D. J. Champion2, Zaven Arzoumanian7, Stanislav Babak8, C. G. Bassa9, N. D. R. Bhat10, A. Brazier11, P. Brem8, M. Burgay12, Sarah Burke-Spolaor5, S. J. Chamberlin13, Sourav Chatterjee11, B. Christy14, Ismaël Cognard15, Ismaël Cognard16, James M. Cordes11, Shi Dai17, Shi Dai3, Timothy Dolch11, Timothy Dolch18, Justin A. Ellis4, Robert D. Ferdman, Emmanuel Fonseca19, Jonathan R. Gair20, N. Garver-Daniels21, Peter A. Gentile21, Marjorie Gonzalez22, E. Graikou2, Lucas Guillemot16, Lucas Guillemot15, Jason W. T. Hessels9, Jason W. T. Hessels23, Glenn Jones24, Ramesh Karuppusamy, Matthew Kerr3, Michael Kramer, Michael T. Lam11, Paul D. Lasky25, A. Lassus2, P. Lazarus2, T. J. W. Lazio4, Kejia Lee17, Lina Levin21, Lina Levin26, Kang Liu2, R. S. Lynch5, Andrew Lyne, J. W. McKee26, Maura McLaughlin21, Sean T. McWilliams21, D. R. Madison5, Richard N. Manchester3, Chiara M. F. Mingarelli4, Chiara M. F. Mingarelli2, David J. Nice27, Stefan Oslowski2, Stefan Oslowski1, Nipuni Palliyaguru28, Timothy T. Pennucci29, Benetge Perera, Delphine Perrodin12, A. Possenti12, Antoine Petiteau30, Scott M. Ransom5, Daniel J. Reardon25, Daniel J. Reardon3, Pablo Rosado31, S. A. Sanidas23, Alberto Sesana32, G. Shaifullah2, G. Shaifullah1, Ryan Shannon3, Ryan Shannon10, X. Siemens33, Joseph Simon33, R. Smits, Renée Spiewak33, Ingrid H. Stairs19, Benjamin Stappers, Daniel R. Stinebring34, Kevin Stovall35, J. K. Swiggum21, Stephen Taylor4, Gilles Theureau15, Gilles Theureau30, Gilles Theureau16, Caterina Tiburzi1, Caterina Tiburzi2, L. Toomey3, Michele Vallisneri4, W. van Straten31, Alberto Vecchio32, Yue-Fei Wang36, Linqing Wen37, X. P. You38, Weiwei Zhu2, Xing-Jiang Zhu37 
TL;DR: In this article, the first joint analysis of the data from the three regional pulsar timing arrays (IPTA) is presented, i.e. of the first IPTA data set, and the approach presently followed for its combination and suggest improvements for future PTA research.
Abstract: The highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limits

412 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the merger event rates of double compact objects as a function of cosmological redshift and provided the results for four cases, each one investigating a different important evolution parameter of binary stars.
Abstract: The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the local universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) systems) are considered to be the most promising GW sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma-ray bursts and may also be associated with kilonovae. In this paper, we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (1) in most cases NS-NS systems dominate the merger rates in the local universe, while BH-BH mergers dominate at high redshift, (2) BH-NS mergers are less frequent than other sources per unit volume, for all time, and (3) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by GW telescopes.

411 citations

Journal ArticleDOI
TL;DR: The Mathematics Teaching Efficacy Belief Instrument (MTEBI) for preservice teachers resulted from the modification of the STEBI-B as discussed by the authors, which consists of 21 items, 13 items on the Personal Mathematics teaching effectiveness (PMTE) subscale and eight items on Mathematics Teaching Outcome Expectancy (MTOE) subscales.
Abstract: The Mathematics Teaching Efficacy Belief Instrument (MTEBI) for preservice teachers resulted from the modification of the Science Teaching Efficacy Belief Instrument STEBI-B. The MTEBI consists of 21 items, 13 items on the Personal Mathematics Teaching Efficacy (PMTE) subscale and eight items on the Mathematics Teaching Outcome Expectancy (MTOE) subscale. Possible scores on the PMTE scale range from 13 to 65; MTOE scores may range from 8 to 40. The first version of the MTEBI had 23 items like the STEBI-B; however, subsequent analysis in this validation required two items be dropped. Reliability analysis produced an alpha coefficient of 0.88 for the PMTE scale and an alpha coefficient of 0. 75 for the MTOE scale (n = 324). Confirmatory factor analysis indicates that the two scales (PMTE and MTOE) are independent, adding to the construct validity of the MTEBI.

410 citations

Journal ArticleDOI
Hou-Feng Zheng1, Vincenzo Forgetta1, Yi-Hsiang Hsu2, Yi-Hsiang Hsu3  +171 moreInstitutions (55)
01 Oct 2015-Nature
TL;DR: Evidence is provided that low‐frequency non‐coding variants have large effects on BMD and fracture, thereby providing rationale for whole‐genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Abstract: The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.

410 citations

Journal ArticleDOI
TL;DR: In this paper, a straightforward operational definition of downsizing is proposed and a theoretical framework of the process of effective downsizing and the organizational changes that may accompany it is presented, along with important organizational processes, characteristics, and outcomes associated with downsizing.
Abstract: Organizational downsizing is becoming pervasive as a characteristic of modern organizations, yet little scholarly literature has addressed the processes and outcomes associated with this phenomenon at the organizational level. Downsizing has often mistakenly been confused operationally with concepts such as decline, layoffs, or nonadaptability, indicating that the definition of the concept remains imprecise. This paper offers a straightforward, operational definition of downsizing. Then the literature on organizational downsizing is used to build a theoretical framework of the process of effective downsizing and the organizational changes that may accompany it. Important organizational processes, characteristics, and outcomes associated with downsizing are identified.

410 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141