scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
TL;DR: From the studies reviewed, it is concluded that chitosan derivatives are promising materials for controlled drug and nonviral gene delivery.
Abstract: Chitosan, a natural based-polymer obtained by alkaline deacetylation of chitin, is nontoxic, biocompatible, and biodegradable. These properties make chitosan a good candidate for the development of conventional and novel drug delivery systems. Chitosan has been found to be used as a support material for gene delivery, cell culture, and tissue engineering. However, practical use of chitosan has been mainly confined to the unmodified forms. For a breakthrough in utilization, especially in the field of controlled drug delivery, graft copolymerization onto chitosan will be a key point, which will introduce desired properties and enlarge the field of the potential applications of chitosan by choosing various types of side chains. Chemical modification of chitosan is useful for the association of bioactive molecules to polymer and controlling the drug release profile. This paper reviews the various methods of preparation of chitosan derivatives intended for controlled drug delivery. From the studies reviewed it is concluded that chitosan derivatives are promising materials for controlled drug and nonviral gene delivery.

334 citations

Journal ArticleDOI
TL;DR: The recent development of analytical techniques and methods enables accurate selenium measurements of environmental concentrations, which will lead to a better understanding of biogeochemical processes, which may enable us to predict the distribution of Se health hazards in areas where this is currently unknown.
Abstract: Selenium is a natural trace element that is of fundamental importance to human health. The extreme geographical variation in selenium concentrations in soils and food crops has resulted in significant health problems related to deficient or excess levels of selenium in the environment. To deal with these kinds of problems in the future it is essential to get a better understanding of the processes that control the global distribution of selenium. The recent development of analytical techniques and methods enables accurate selenium measurements of environmental concentrations, which will lead to a better understanding of biogeochemical processes. This improved understanding may enable us to predict the distribution of selenium in areas where this is currently unknown. These predictions are essential to prevent future Se health hazards in a world that is increasingly affected by human activities.

334 citations

Journal ArticleDOI
TL;DR: The authors suggest that the congruity of a Web site with a visitor’s culture is a site content characteristic that influences the likelihood of experiencing flow, and develop and describe preliminary evidence supporting their model.
Abstract: The Web is intrinsically a global medium. Consequently, deciding how a Web site should express potentially culturespecific content to worldwide visitors is an important consideration in Web site design. In this article, the authors examine some of the site content characteristics that can lead Web site visitors to an optimal navigation experience, or flow, in a cross-cultural context. In particular, a cognitive framework focuses on the effect of culture on attitudes toward the site and flow. The authors suggest that the congruity of a Web site with a visitor’s culture is a site content characteristic that influences the likelihood of experiencing flow. The authors develop a conceptual model to account for the impact of culture and other site content characteristics on flow and describe preliminary evidence supporting their model.

333 citations

Journal ArticleDOI
TL;DR: Initial analyses of genome sequences have suggested that plant-associated Burkholderia spp.
Abstract: Rhizobia form specialized nodules on the roots of legumes (family Fabaceae) and fix nitrogen in exchange for carbon from the host plant. Although the majority of legumes form symbioses with members of genus Rhizobium and its relatives in class Alphaproteobacteria, some legumes, such as those in the large genus Mimosa, are nodulated predominantly by betaproteobacteria in the genera Burkholderia and Cupriavidus. The principal centers of diversity of these bacteria are in central Brazil and South Africa. Molecular phylogenetic studies have shown that betaproteobacteria have existed as legume symbionts for approximately 50 million years, and that, although they have a common origin, the symbiosis genes in both subclasses have evolved separately since then. Additionally, some species of genus Burkholderia, such as B. phymatum, are highly promiscuous, effectively nodulating several important legumes, including common bean (Phaseolus vulgaris). In contrast to genus Burkholderia, only one species of genus Cupriavidus (C. taiwanensis) has so far been shown to nodulate legumes. The recent availability of the genome sequences of C. taiwanensis, B. phymatum, and B. tuberum has paved the way for a more detailed analysis of the evolutionary and mechanistic differences between nodulating strains of alpha- and betaproteobacteria. Initial analyses of genome sequences have suggested that plant-associated Burkholderia spp. have lower G+C contents than Burkholderia spp. that are opportunistic human pathogens, thus supporting previous suggestions that the plant- and human-associated groups of Burkholderia actually belong in separate genera.

333 citations

Journal ArticleDOI
TL;DR: Information technology acceptance models provide a means to understand which aspects of e- health are valued by patients and how this may affect future use, and antecedents to the models can be used to predict e-health acceptance in advance of system development.

331 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141