scispace - formally typeset
Search or ask a question
Institution

University of Wollongong

EducationWollongong, New South Wales, Australia
About: University of Wollongong is a education organization based out in Wollongong, New South Wales, Australia. It is known for research contribution in the topics: Population & Graphene. The organization has 15674 authors who have published 46658 publications receiving 1197471 citations. The organization is also known as: UOW & Wollongong University.
Topics: Population, Graphene, Mental health, Anode, Lithium


Papers
More filters
Journal ArticleDOI
01 Aug 2019-Small
TL;DR: The structural evolution, electrochemical performance, and recent progress of Nax MO2 as cathode materials for SIBs are reviewed and summarized and several strategies are proposed to help alleviate these issues.
Abstract: Sodium-ion batteries (SIBs) are attracting increasing attention and considered to be a low-cost complement or an alternative to lithium-ion batteries (LIBs), especially for large-scale energy storage. Their application, however, is limited because of the lack of suitable host materials to reversibly intercalate Na+ ions. Layered transition metal oxides (NaxMO2, M = Fe, Mn, Ni, Co, Cr, Ti, V, and their combinations) appear to be promising cathode candidates for SIBs due to their simple structure, ease of synthesis, high operating potential, and feasibility for commercial production. In the present work, the structural evolution, electrochemical performance, and recent progress of NaxMO2 as cathode materials for SIBs are reviewed and summarized. Moreover, the existing drawbacks are discussed and several strategies are proposed to help alleviate these issues. In addition, the exploration of full cells based on NaxMO2 cathodes and future perspectives are discussed to provide guidance for the future commercialization of such systems.

252 citations

Journal ArticleDOI
15 Jan 2016-Sensors
TL;DR: An overview of the different types of FOS used for strain/temperature sensing in composite materials and their compatibility with and suitability for embedding inside a composite material is presented.
Abstract: This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

252 citations

Journal ArticleDOI
TL;DR: The Australian Guidelines provide evidence-informed recommendations for a healthy day (24-h), integrating physical activity, sedentary behaviour (including limits to screen time), and sleep for infants (<1 year), toddlers (1–2 years) and preschoolers (3–5 years).
Abstract: In 2017, the Australian Government funded the update of the National Physical Activity Recommendations for Children 0–5 years, with the intention that they be an integration of movement behaviours across the 24-h period. The benefit for Australia was that it could leverage research in Canada in the development of their 24-h guidelines for the early years. Concurrently, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group published a model to produce guidelines based on adoption, adaption and/or de novo development using the GRADE evidence-to-decision framework. Referred to as the GRADE-ADOLOPMENT approach, it allows guideline developers to follow a structured and transparent process in a more efficient manner, potentially avoiding the need to unnecessarily repeat costly tasks such as conducting systematic reviews. The purpose of this paper is to outline the process and outcomes for adapting the Canadian 24-Hour Movement Guidelines for the Early Years to develop the Australian 24-Hour Movement Guidelines for the Early Years guided by the GRADE-ADOLOPMENT framework. The development process was guided by the GRADE-ADOLOPMENT approach. A Leadership Group and Consensus Panel were formed and existing credible guidelines identified. The draft Canadian 24-h integrated movement guidelines for the early years best met the criteria established by the Panel. These were evaluated based on the evidence in the GRADE tables, summaries of findings tables and draft recommendations from the Canadian Draft Guidelines. Updates to each of the Canadian systematic reviews were conducted and the Consensus Panel reviewed the evidence for each behaviour separately and made a decision to adopt or adapt the Canadian recommendations for each behaviour or create de novo recommendations. An online survey was then conducted (n = 302) along with five focus groups (n = 30) and five key informant interviews (n = 5) to obtain feedback from stakeholders on the draft guidelines. Based on the evidence from the Canadian systematic reviews and the updated systematic reviews in Australia, the Consensus Panel agreed to adopt the Canadian recommendations and, apart from some minor changes to the wording of good practice statements, keep the wording of the guidelines, preamble and title of the Canadian Guidelines. The Australian Guidelines provide evidence-informed recommendations for a healthy day (24-h), integrating physical activity, sedentary behaviour (including limits to screen time), and sleep for infants (<1 year), toddlers (1–2 years) and preschoolers (3–5 years). To our knowledge, this is only the second time the GRADE-ADOLOPMENT approach has been used. Following this approach, the judgments of the Australian Consensus Panel did not differ sufficiently to change the directions and strength of the recommendations and as such, the Canadian recommendations were adopted with very minor alterations. This allowed the Guidelines to be developed much faster and at lower cost. As such, we would recommend the GRADE-ADOLOPMENT approach, especially if a credible set of guidelines, with all supporting materials and developed using a transparent process, is available. Other countries may consider using this approach when developing and/or revising national movement guidelines.

252 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent progress in TMP of AHSSs, with focus on the processing-microstructure-property relationships of the processed AHSS, is provided in this paper.

251 citations

Journal ArticleDOI
06 Mar 2019-Nature
TL;DR: It is suggested that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space created by RSLR.
Abstract: Coastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems1,2, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates3. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century4, but these carbon–climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion4,5. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.7 to 3.7 times higher soil carbon concentrations within 20 centimetres of the surface than those subject to a long period of sea-level stability. This disparity increases with depth, with soil carbon concentrations reduced by a factor of 4.9 to 9.1 at depths of 50 to 100 centimetres. We analyse the response of a wetland exposed to recent rapid RSLR following subsidence associated with pillar collapse in an underlying mine and demonstrate that the gain in carbon accumulation and elevation is proportional to the accommodation space (that is, the space available for mineral and organic material accumulation) created by RSLR. Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space6 created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate–carbon modelling. Wetlands exposed to rapid sea-level rise over the late Holocene contain more soil carbon than those that experienced a long period of sea-level stability.

251 citations


Authors

Showing all 15918 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Menachem Elimelech15754795285
Yoshio Bando147123480883
Paul Mitchell146137895659
Jun Chen136185677368
Zhen Li127171271351
Neville Owen12770074166
Chao Zhang127311984711
Jay Belsky12444155582
Shi Xue Dou122202874031
Keith A. Johnson12079851034
William R. Forman12080053717
Yang Li117131963111
Yusuke Yamauchi117100051685
Guoxiu Wang11765446145
Network Information
Related Institutions (5)
University of New South Wales
153.6K papers, 4.8M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

95% related

University of Sydney
187.3K papers, 6.1M citations

93% related

Australian National University
109.2K papers, 4.3M citations

93% related

University of Melbourne
174.8K papers, 6.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202388
2022483
20212,897
20203,018
20192,784