scispace - formally typeset
Search or ask a question
Institution

University of Wollongong

EducationWollongong, New South Wales, Australia
About: University of Wollongong is a education organization based out in Wollongong, New South Wales, Australia. It is known for research contribution in the topics: Population & Context (language use). The organization has 15674 authors who have published 46658 publications receiving 1197471 citations. The organization is also known as: UOW & Wollongong University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes the recent efforts on electrode materials with hierarchical structures, and discusses the effects of hierarchical structures on electrochemical performance in detail, including micro/nano and hetero/hierarchical structures characterized by ordered assembly of different sizes, phases, and/or pores.
Abstract: Since their successful commercialization in 1990s, lithium-ion batteries (LIBs) have been widely applied in portable digital products. The energy density and power density of LIBs are inadequate, however, to satisfy the continuous growth in demand. Considering the cost distribution in battery system, it is essential to explore cathode/anode materials with excellent rate capability and long cycle life. Nanometer-sized electrode materials could quickly take up and store numerous Li+ ions, afforded by short diffusion channels and large surface area. Unfortunately, low thermodynamic stability of nanoparticles results in electrochemical agglomeration and raises the risk of side reactions on electrolyte. Thus, micro/nano and hetero/hierarchical structures, characterized by ordered assembly of different sizes, phases, and/or pores, have been developed, which enable us to effectively improve the utilization, reaction kinetics, and structural stability of electrode materials. This review summarizes the recent efforts on electrode materials with hierarchical structures, and discusses the effects of hierarchical structures on electrochemical performance in detail. Multidimensional self-assembled structures can achieve integration of the advantages of materials with different sizes. Core/yolk-shell structures provide synergistic effects between the shell and the core/yolk. Porous structures with macro-, meso-, and micropores can accommodate volume expansion and facilitate electrolyte infiltration.

411 citations

Journal ArticleDOI
TL;DR: Thermocells are demonstrated, in practical configurations, that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes that provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency.
Abstract: Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo- electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.

409 citations

Journal ArticleDOI
TL;DR: In this paper, a mini review of the development of metal organic framework (MOF)-derived 1D porous or hollow carbon nanofibers using the electrospinning method and their application in energy storage (e.g., supercapacitors and rechargeable batteries) and conversion devices (e., fuel cells) is presented.
Abstract: Metal organic framework (MOF)-derived nanoporous carbons (NPCs) have been proposed as promising electrode materials for energy storage and conversion devices. However, MOF-derived NPCs typically suffer from poor electrical conductivity due to the lack of connectivity between these particles and a micropore-dominated storage mechanism, which hinder mass and electron transfer, thereby leading to poor electrochemical performance. In recent years, one-dimensional (1D) MOF-derived carbon nanostructures obtained using an electrospinning method have emerged as promising materials for both electrochemical energy storage (EES) and energy conversion applications. In this mini review, the recent progress in the development of MOF-derived 1D porous or hollow carbon nanofibers using the electrospinning method and their application in energy storage (e.g., supercapacitors and rechargeable batteries) and conversion devices (e.g., fuel cells) is presented. The synthetic method, formation mechanism and the structure–activity relationship of such porous or hollow carbon nanofibers are also discussed in detail. Finally, future perspectives on the development of electrospun MOF-derived carbon nanomaterials for energy storage and conversion applications are provided. This review will provide some guidance for future derivations of 1D hollow carbon nanomaterials from MOFs using electrospinning technology.

408 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of graphene oxide/multi-walled carbon nanotube (MWCNT) composites employing an alternative and novel approach for possible application as supercapacitor materials in energy storage devices.
Abstract: We report the synthesis of graphene oxide/multi-walled carbon nanotube (MWCNT) composites employing an alternative and novel approach for possible application as supercapacitor materials in energy storage devices. Integrating these nanostructures resulted in a strong synergistic effect between the two materials consequently leading to a robust and superior hybrid material with higher capacitance compared to either graphene oxide or MWCNTs. Specific capacitances of 251, 85 and 60 F g−1 were obtained for graphene oxide-multi-walled carbon nanotubes, MWCNTs and graphene oxide, respectively, in a potential range from −0.1 to 0.5 V. Most importantly, a 120% increase in capacitance was observed with increasing cycle number at 20 mV s−1. The ease of synthesis and the exceptional electrochemical properties make the use of this nanostructure an attractive, alternative way of designing future supercapacitors in both conventional fields and new emerging areas.

408 citations

Journal ArticleDOI
TL;DR: This article examined tourists' perceptions of the historical authenticity of The Rocks, Australia, a heritage precinct fashioned by the Sydney Cove Redevelopment Authority, and found that overall tourists perceive this representation of history as authentic.

408 citations


Authors

Showing all 15918 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Menachem Elimelech15754795285
Yoshio Bando147123480883
Paul Mitchell146137895659
Jun Chen136185677368
Zhen Li127171271351
Neville Owen12770074166
Chao Zhang127311984711
Jay Belsky12444155582
Shi Xue Dou122202874031
Keith A. Johnson12079851034
William R. Forman12080053717
Yang Li117131963111
Yusuke Yamauchi117100051685
Guoxiu Wang11765446145
Network Information
Related Institutions (5)
University of New South Wales
153.6K papers, 4.8M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

95% related

University of Sydney
187.3K papers, 6.1M citations

93% related

Australian National University
109.2K papers, 4.3M citations

93% related

University of Melbourne
174.8K papers, 6.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202388
2022483
20212,897
20203,018
20192,784