scispace - formally typeset
Search or ask a question
Institution

University of Wollongong

EducationWollongong, New South Wales, Australia
About: University of Wollongong is a education organization based out in Wollongong, New South Wales, Australia. It is known for research contribution in the topics: Population & Graphene. The organization has 15674 authors who have published 46658 publications receiving 1197471 citations. The organization is also known as: UOW & Wollongong University.
Topics: Population, Graphene, Mental health, Anode, Lithium


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents the most recent review of the Geant4-DNA extension, as available to Geant 4 users since June 2015 (release 10.2 Beta), and includes the description of new physical models for thedescription of electron elastic and inelastic interactions in liquid water, as well as new examples dedicated to the simulation of physicochemical and chemical stages of water radiolysis.

370 citations

Journal ArticleDOI
01 Feb 2008-Carbon
TL;DR: In this paper, a mesoporous carbon (S-C) composites were tested in a novel ionic liquid electrolyte consisting of 1-ethyl-3methylimidazolium bis(trifluoromethanesulfonyl)imide and lithium bistrifluorsulfonimidate.

370 citations

Journal ArticleDOI
TL;DR: The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest.

370 citations

Journal ArticleDOI
TL;DR: Interestingly, it is found that the amorphousTiO2 shells offer superior buffering properties compared to crystalline TiO2 layers for unprecedented cycling stability, and accelerating rate calorimetry testing reveals that the TiO1 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes.
Abstract: Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol–gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO2), with core–shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO2 shells offer superior buffering properties compared to crystalline TiO2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO2-encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes.

369 citations

Journal ArticleDOI
TL;DR: This review represents the first meta-analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied.
Abstract: Marine organisms are simultaneously exposed to anthropogenic stressors with likely interactive effects, including synergisms in which the combined effects of multiple stressors are greater than the sum of individual effects. Early life stages of marine organisms are potentially vulnerable to the stressors associated with global change, but identifying general patterns across studies, species and response variables is challenging. This review represents the first meta-analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied. Knowledge gaps in research on multiple abiotic stressors and early life stages are also identified. The meta-analysis yielded several key results: (1) Synergistic interactions (65% of individual tests) are more common than additive (17%) or antagonistic (17%) interactions. (2) Larvae are generally more vulnerable than embryos to thermal and pH stress. (3) Survival is more likely than sublethal responses to be affected by thermal, salinity and pH stress. (4) Interaction types vary among stressors, ontogenetic stages and biological responses, but they are more consistent among phyla. (5) Ocean acidification is a greater stressor for calcifying than noncalcifying larvae. Despite being more ecologically realistic than single-factor studies, multifactorial studies may still oversimplify complex systems, and so meta-analyses of the data from them must be cautiously interpreted with regard to extrapolation to field conditions. Nonetheless, our results identify taxa with early life stages that may be particularly vulnerable (e.g. molluscs, echinoderms) or robust (e.g. arthropods, cnidarians) to abiotic stress. We provide a list of recommendations for future multiple stressor studies, particularly those focussed on early marine life stages.

369 citations


Authors

Showing all 15918 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Menachem Elimelech15754795285
Yoshio Bando147123480883
Paul Mitchell146137895659
Jun Chen136185677368
Zhen Li127171271351
Neville Owen12770074166
Chao Zhang127311984711
Jay Belsky12444155582
Shi Xue Dou122202874031
Keith A. Johnson12079851034
William R. Forman12080053717
Yang Li117131963111
Yusuke Yamauchi117100051685
Guoxiu Wang11765446145
Network Information
Related Institutions (5)
University of New South Wales
153.6K papers, 4.8M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

95% related

University of Sydney
187.3K papers, 6.1M citations

93% related

Australian National University
109.2K papers, 4.3M citations

93% related

University of Melbourne
174.8K papers, 6.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202388
2022483
20212,897
20203,018
20192,784