scispace - formally typeset
Search or ask a question
Institution

University of Würzburg

EducationWurzburg, Bayern, Germany
About: University of Würzburg is a education organization based out in Wurzburg, Bayern, Germany. It is known for research contribution in the topics: Population & CAS Registry Number. The organization has 31437 authors who have published 62203 publications receiving 2337033 citations. The organization is also known as: Julius-Maximilians-Universität Würzburg & Würzburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: Combined, the two alternative reproductive tactics used by male O. taurus appear to favour opposite horn phenotypes, which may explain the paucity of intermediate morphologies in natural populations of O. Taurus.

392 citations

Journal ArticleDOI
05 Aug 2012-Nature
TL;DR: Identifying and characterize two members of the nitrate/peptide transporter family, GTR1 and GTR2, as high-affinity, proton-dependent glucosinolate-specific transporters has agricultural potential as a means to control allocation of defence compounds in a tissue-specific manner.
Abstract: Two high-affinity proton-dependent transporters of glucosinolates have been identified in Arabidopsis and termed GTR1 and GTR2; these transporters are essential for transporting glucosinolates to seeds, offering a means to control the allocation of defence compounds in a tissue-specific manner, which may have agricultural biotechnology implications. Glucosinolates are important plant defence compounds. They are synthesized in various tissues and then translocated to the seeds, where they accumulate. In this study, Barbara Halkier and colleagues examine the molecular basis of this long-distance transport process. They identify two high-affinity, proton-dependent glucosinolate-specific transporters in Arabidopsis, termed GTR1 and GTR2. These transporters control the loading of glucosinolates from the apoplast into the phloem. The authors' specific and complete elimination of glucosinolates from Arabidopsis seeds, combined with the compounds' retention in vegetative tissues, establishes transport engineering as a potential approach for eliminating anti-nutritional natural products in high-value crops. In plants, transport processes are important for the reallocation of defence compounds to protect tissues of high value1, as demonstrated in the plant model Arabidopsis, in which the major defence compounds, glucosinolates2, are translocated to seeds on maturation3. The molecular basis for long-distance transport of glucosinolates and other defence compounds, however, remains unknown. Here we identify and characterize two members of the nitrate/peptide transporter family, GTR1 and GTR2, as high-affinity, proton-dependent glucosinolate-specific transporters. The gtr1 gtr2 double mutant did not accumulate glucosinolates in seeds and had more than tenfold over-accumulation in source tissues such as leaves and silique walls, indicating that both plasma membrane-localized transporters are essential for long-distance transport of glucosinolates. We propose that GTR1 and GTR2 control the loading of glucosinolates from the apoplasm into the phloem. Identification of the glucosinolate transporters has agricultural potential as a means to control allocation of defence compounds in a tissue-specific manner.

392 citations

Journal ArticleDOI
TL;DR: This issue of Surgical Endoscopy, the first part of the Guidelines is published including sections on basics, indication for surgery, perioperative management, and key points of technique, and the next part will address complications and comparisons between open and laparoscopic techniques.
Abstract: Guidelines are increasingly determining the decision process in day-to-day clinical work. Guidelines describe the current best possible standard in diagnostics and therapy. They should be developed by an international panel of experts, whereby alongside individual experience, above all, the results of comparative studies are decisive. According to the results of high-ranking scientific studies published in peer-reviewed journals, statements and recommendations are formulated, and these are graded strictly according to the criteria of evidence-based medicine. Guidelines can therefore be valuable in helping particularly the young surgeon in his or her day-to-day work to find the best decision for the patient when confronted with a wide and confusing range of options. However, even experienced surgeons benefit because by virtue of a heavy workload and commitment, they often find it difficult to keep up with the ever-increasing published literature. All guidelines require regular updating, usually every 3 years, in line with progress in the field. The current Guidelines focus on technique and perioperative management of laparoscopic ventral hernia repair and constitute the first comprehensive guidelines on this topic. In this issue of Surgical Endoscopy, the first part of the Guidelines is published including sections on basics, indication for surgery, perioperative management, and key points of technique. The next part (Part 2) of the Guidelines will address complications and comparisons between open and laparoscopic techniques. Part 3 will cover mesh technology, hernia prophylaxis, technique-related issues, new technologic developments, lumbar and other unusual hernias, and training/education.

391 citations

Journal ArticleDOI
24 Jul 2014-Nature
TL;DR: Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells that have considerable prognostic value, suggesting that different cellular responses to physiological and oncogenic MyC levels are controlled by promoter affinity.
Abstract: In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.

391 citations

Journal ArticleDOI
TL;DR: Mycoses summarized in the hyalohyphomycosis group are heterogeneous, defined by the presence of hyaline (non-dematiaceous) hyphae, and management usually consists of surgery and antifungal treatment, depending on the clinical presentation.

391 citations


Authors

Showing all 31653 results

NameH-indexPapersCitations
Peer Bork206697245427
Cyrus Cooper2041869206782
D. M. Strom1763167194314
George P. Chrousos1691612120752
David A. Bennett1671142109844
Marc W. Kirschner162457102145
Josef M. Penninger154700107295
William A. Catterall15453683561
Rui Zhang1512625107917
Niels Birbaumer14283577853
Kim Nasmyth14229459231
James J. Gross139529100206
Michael Schmitt1342007114667
Jean-Luc Brédas134102685803
Alexander Schmidt134118583879
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

94% related

University of Pittsburgh
201K papers, 9.6M citations

94% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Duke University
200.3K papers, 10.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022398
20212,960
20202,899
20192,714
20182,447