scispace - formally typeset
Search or ask a question
Institution

University of Würzburg

EducationWurzburg, Bayern, Germany
About: University of Würzburg is a education organization based out in Wurzburg, Bayern, Germany. It is known for research contribution in the topics: Population & CAS Registry Number. The organization has 31437 authors who have published 62203 publications receiving 2337033 citations. The organization is also known as: Julius-Maximilians-Universität Würzburg & Würzburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: 68Ga-PSMA I&T shows potential for high-contrast PET imaging of metastatic PC, whereas its 177Lu-labeled counterpart exhibits suitable targeting and retention characteristics for successful endoradiotherapeutic treatment.
Abstract: On the basis of the high and consistent expression of prostate-specific membrane antigen (PSMA) in metastatic prostate cancer (PC), the goal of this study was the development, preclinical evaluation, and first proof-of-concept investigation of a PSMA inhibitor for imaging and therapy (PSMA I&T) for 68Ga-based PET and 177Lu-based endoradiotherapeutic treatment in patients with metastatic and castration-resistant disease. Methods: PSMA I&T was synthesized in a combined solid phase and solution chemistry strategy. The PSMA affinity of natGa-/natLu-PSMA I&T was determined in a competitive binding assay using LNCaP cells. Internalization kinetics of 68Ga- and 177Lu-PSMA I&T were investigated using the same cell line, and biodistribution studies were performed in LNCaP tumor–bearing CD-1 nu/nu mice. Initial human PET imaging studies using 68Ga-PSMA I&T, as well as endoradiotherapeutic treatment of 2 patients with metastatic PC using 177Lu-PSMA I&T, were performed. Results: PSMA I&T and its cold gallium and lutetium analog revealed nanomolar affinity toward PSMA. The DOTAGA (1,4,7,10-tetraazacyclododecane-1-(glutamic acid)-4,7,10-triacetic acid) conjugate PSMA I&T allowed fast and high-yield labeling with 68GaIII and 177LuIII. Uptake of 68Ga-/177Lu-PSMA I&T in LNCaP tumor cells is highly efficient and PSMA-specific, as demonstrated by competition studies both in vitro and in vivo. Tumor targeting and tracer kinetics in vivo were fast, with the highest uptake in tumor xenografts and kidneys (both PSMA-specific). First-in-human 68Ga-PSMA I&T PET imaging allowed high-contrast detection of bone lesions, lymph node, and liver metastases. Endoradiotherapy with 177Lu-PSMA I&T in 2 patients was found to be effective and safe with no detectable side effects. Conclusion:68Ga-PSMA I&T shows potential for high-contrast PET imaging of metastatic PC, whereas its 177Lu-labeled counterpart exhibits suitable targeting and retention characteristics for successful endoradiotherapeutic treatment. Prospective studies on larger cohorts of patients are warranted and planned.

384 citations

Journal ArticleDOI
TL;DR: It is shown that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia, and is suitable for therapeutic intervention in the setting of ischemic heart disease.
Abstract: Background—Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. Methods and Results—Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2–associated death promoter) and Sirtuin...

383 citations

Journal ArticleDOI
TL;DR: In this paper, the pathogenicity islands (PAI) I and II were mapped to positions 82 and 97, respectively, on the E. coli K-12 linkage map.
Abstract: Uropathogenic Escherichia coli 536 (O6:K15:H31) carries two unstable DNA regions, which were shown to be responsible for virulence. These regions, on which the genes for hemolysin production (hly) and P-related fimbriae (prf) are located, are termed pathogenicity islands (PAI) I and II, and were mapped to positions 82 and 97, respectively, on the E. coli K-12 linkage map. Sequence analysis of the PAI region junction sites revealed sequences of the leuX and selC loci specific for leucine and selenocysteine tRNAs. The tRNA loci function as the targets for excision events. Northern (RNA) blot analysis revealed that the sites of excision are transcriptionally active in the wild-type strain and that no tRNA-specific transcripts were found in the deletion mutant. The analysis of deletion mutants revealed that the excision of these regions is specific and involves direct repeats of 16 and 18 nucleotides, respectively, on both sides of the deletions. By using DNA long-range mapping techniques, the size of PAI I, located at position 82, was calculated to be 70 kb, while PAI II, mapped at position 97, comprises 190 kb. The excision events described here reflect the dynamics of the E. coli chromosome.

383 citations

Journal ArticleDOI
TL;DR: The degree of hyperechogenicity of the substania nigra closely correlated with the severity and duration of PD and was distinctly increased in 12 severely affected PD patients, while the substantia nigra was poorly visualized or nondetectable by TCCS.
Abstract: To detect morphologic abnormalities in Parkinson's disease (PD), we examined 30 patients with PD and 30 age- and sex-matched nonparkinsonian controls by transcranial color-coded real-time sonography (TCCS). In 12 severely affected PD patients, the echogenicity of the substantia nigra was distinctly increased. In the remaining 18 PD patients and in all controls, the substantia nigra was poorly visualized or nondetectable by TCCS. The degree of hyperechogenicity of the substantia nigra closely correlated with the severity and duration of PD (p < 0.001). The increased echogenicity of the substantia nigra notably results from nigral gliosis and reflects the stage of degeneration.

383 citations

Journal ArticleDOI
01 Mar 2007-Diabetes
TL;DR: Uncoupling of the endothelial nitric oxide synthase (eNOS) resulting in superoxide anion (O2−) formation instead ofNitric oxide (NO) causes diabetic endothelial dysfunction and subsequent reduction of EPC levels and impairment of E PC function likely contributes to the pathogenesis of vascular disease in diabetes.
Abstract: Uncoupling of the endothelial nitric oxide synthase (eNOS) resulting in superoxide anion (O(2)(-)) formation instead of nitric oxide (NO) causes diabetic endothelial dysfunction. eNOS regulates mobilization and function of endothelial progenitor cells (EPCs), key regulators of vascular repair. We postulate a role of eNOS uncoupling for reduced number and function of EPC in diabetes. EPC levels in diabetic patients were significantly reduced compared with those of control subjects. EPCs from diabetic patients produced excessive O(2)(-) and showed impaired migratory capacity compared with nondiabetic control subjects. NOS inhibition with N(G)-nitro-l-arginine attenuated O(2)(-) production and normalized functional capacity of EPCs from diabetic patients. Glucose-mediated EPC dysfunction was protein kinase C dependent, associated with reduced intracellular BH(4) (tetrahydrobiopterin) concentrations, and reversible after exogenous BH(4) treatment. Activation of NADPH oxidases played an additional but minor role in glucose-mediated EPC dysfunction. In rats with streptozotocin-induced diabetes, circulating EPCs were reduced to 39 +/- 5% of controls and associated with uncoupled eNOS in bone marrow. Our results identify uncoupling of eNOS in diabetic bone marrow, glucose-treated EPCs, and EPCs from diabetic patients resulting in eNOS-mediated O(2)(-) production. Subsequent reduction of EPC levels and impairment of EPC function likely contributes to the pathogenesis of vascular disease in diabetes.

383 citations


Authors

Showing all 31653 results

NameH-indexPapersCitations
Peer Bork206697245427
Cyrus Cooper2041869206782
D. M. Strom1763167194314
George P. Chrousos1691612120752
David A. Bennett1671142109844
Marc W. Kirschner162457102145
Josef M. Penninger154700107295
William A. Catterall15453683561
Rui Zhang1512625107917
Niels Birbaumer14283577853
Kim Nasmyth14229459231
James J. Gross139529100206
Michael Schmitt1342007114667
Jean-Luc Brédas134102685803
Alexander Schmidt134118583879
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

94% related

University of Pittsburgh
201K papers, 9.6M citations

94% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Duke University
200.3K papers, 10.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022398
20212,960
20202,899
20192,714
20182,447