scispace - formally typeset
Search or ask a question
Institution

University of Würzburg

EducationWurzburg, Bayern, Germany
About: University of Würzburg is a education organization based out in Wurzburg, Bayern, Germany. It is known for research contribution in the topics: Population & Gene. The organization has 31437 authors who have published 62203 publications receiving 2337033 citations. The organization is also known as: Julius-Maximilians-Universität Würzburg & Würzburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: All types of cutaneous afferent fibers are already committed to their phenotype 2 wk after birth but undergo some maturation over the following weeks, which has great potential for the study of transgenic mice with targeted mutations of genes that code factors that are involved in the specification of sensory neuron phenotypes.
Abstract: Koltzenburg, Martin, Cheryl L. Stucky, and Gary R. Lewin. Receptive properties of mouse sensory neurons innervating hairy skin. J. Neurophysiol. 78: 1841–1850, 1997. Using an in vitro nerve skin pr...

359 citations

Journal ArticleDOI
Markus Ackermann1, Marco Ajello1, W. B. Atwood2, Luca Baldini  +205 moreInstitutions (31)
TL;DR: In this paper, the results of analysis of cosmic-ray electrons using about 8 x 10(6) electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope were presented.
Abstract: We present the results of our analysis of cosmic-ray electrons using about 8 x 10(6) electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extend ...

359 citations

Journal ArticleDOI
TL;DR: BDNF and NT-3 levels in post-mortem brain tissue from schizophrenic patients were determined by ELISA and lend further evidence to the neurotrophin hypothesis of schizophrenic psychoses which proposes that alterations in expression of neurotrophic factors could be responsible for neural maldevelopment and disturbed neural plasticity.

358 citations

Journal ArticleDOI
TL;DR: The 3‐D extracellular matrix provides a spatially complex and biomechanically demanding substrate for cell migration, thereby differing from cell migration across planar ligands.
Abstract: Cell migration in extracellular matrix is a complex process of adhesion and deadhesion events combined with cellular strategies to overcome the biophysical resistance imposed by three-dimensionally interconnected matrix ligands. Using a 3-D collagen matrix migration model in combination with computer-assisted cell tracking for reconstruction of migration paths and confocal microscopy, we investigated molecular principles governing cell-matrix interactions and migration of different cell types. Highly invasive MV3 melanoma cells and fibroblasts are large and highly polarized cells migrating at low speed (0.1-0.5 microm/min) and at high directional persistence. MV3 melanoma cells utilize adhesive migration strategies as characterized by high beta1 integrin surface expression, beta1 integrin clustering at interactions with matrix fibers, and beta1 integrin-mediated adhesion for force generation and migration. In contrast, T lymphocytes and dendritic cells are highly mobile cells of lower beta1 integrin expression migrating at 10- to 40-fold higher velocities, and directionally unpredictable path profiles. This migration occurs in the absence of focal adhesions and largely independent of beta1 integrin-mediated adhesion. Whereas cell-matrix interactions of migrating tumor cells result in traction and reorientation of collagen fibers, partial matrix degradation, and pore formation, leukocytes form transient and short-lived interactions with the collagen lacking structural proteolysis and matrix remodeling. In conclusion, the 3-D extracellular matrix provides a spatially complex and biomechanically demanding substrate for cell migration, thereby differing from cell migration across planar ligands. Highly adhesive and integrin-dependent migration strategies detected in morphologically large and slowly migrating cells may result in reorganization of the extracellular matrix, whereas leukocytes favor largely integrin-independent, rapid, and flexible migration strategies lacking typical focal adhesions and structural matrix remodeling.

358 citations

Journal ArticleDOI
TL;DR: New cAMP-FRET sensor based on a single cAMP binding domain of the hyperpolarization activated cyclic nucleotide-gated potassium channel 2 (HCN2) makes HCN2-camps particularly well suited to monitor subcellular localization of cardiomyocyte cAMP.
Abstract: β1- and β2-adrenergic receptors (βARs) are known to differentially regulate cardiomyocyte contraction and growth. We tested the hypothesis that these differences are attributable to spatial compartmentation of the second messenger cAMP. Using a fluorescent resonance energy transfer (FRET)-based approach, we directly monitored the spatial and temporal distribution of cAMP in adult cardiomyocytes. We developed a new cAMP-FRET sensor (termed HCN2-camps) based on a single cAMP binding domain of the hyperpolarization activated cyclic nucleotide-gated potassium channel 2 (HCN2). Its cytosolic distribution, high dynamic range, and sensitivity make HCN2-camps particularly well suited to monitor subcellular localization of cardiomyocyte cAMP. We generated HCN2-camps transgenic mice and performed single-cell FRET imaging on freshly isolated cardiomyocytes. Whole-cell superfusion with isoproterenol showed a moderate elevation of cAMP. Application of various phosphodiesterase (PDE) inhibitors revealed stringent contr...

358 citations


Authors

Showing all 31653 results

NameH-indexPapersCitations
Peer Bork206697245427
Cyrus Cooper2041869206782
D. M. Strom1763167194314
George P. Chrousos1691612120752
David A. Bennett1671142109844
Marc W. Kirschner162457102145
Josef M. Penninger154700107295
William A. Catterall15453683561
Rui Zhang1512625107917
Niels Birbaumer14283577853
Kim Nasmyth14229459231
James J. Gross139529100206
Michael Schmitt1342007114667
Jean-Luc Brédas134102685803
Alexander Schmidt134118583879
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

94% related

University of Pittsburgh
201K papers, 9.6M citations

94% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Duke University
200.3K papers, 10.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022398
20212,960
20202,899
20192,714
20182,447