scispace - formally typeset
Search or ask a question
Institution

University of Würzburg

EducationWurzburg, Bayern, Germany
About: University of Würzburg is a education organization based out in Wurzburg, Bayern, Germany. It is known for research contribution in the topics: Population & CAS Registry Number. The organization has 31437 authors who have published 62203 publications receiving 2337033 citations. The organization is also known as: Julius-Maximilians-Universität Würzburg & Würzburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: 6 different mutations in coenzyme Q10 biosynthesis monooxygenase 6 (COQ6) in 13 individuals from 7 families were identified and each mutation was linked to early-onset SRNS with sensorineural deafness, suggesting that coen enzyme Q10-related forms of SRNS and hearing loss can be molecularly identified and potentially treated.
Abstract: Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme Q10 biosynthesis monooxygenase 6 (COQ6) in 13 individuals from 7 families by homozygosity mapping. Each mutation was linked to early-onset SRNS with sensorineural deafness. The deleterious effects of these human COQ6 mutations were validated by their lack of complementation in coq6-deficient yeast. Furthermore, knockdown of Coq6 in podocyte cell lines and coq6 in zebrafish embryos caused apoptosis that was partially reversed by coenzyme Q10 treatment. In rats, COQ6 was located within cell processes and the Golgi apparatus of renal glomerular podocytes and in stria vascularis cells of the inner ear, consistent with an oto-renal disease phenotype. These data suggest that coenzyme Q10-related forms of SRNS and hearing loss can be molecularly identified and potentially treated.

341 citations

Journal ArticleDOI
TL;DR: It is demonstrated that different molecular mechanisms contribute to a gradual development of fluconazole resistance in C. albicans.
Abstract: From each of two AIDS patients with oropharyngeal candidiasis, five Candida albicans isolates from recurrent episodes of infection which became gradually resistant against fluconazole during antimycotic treatment were analyzed for molecular changes responsible for drug resistance. In both patients, a single C. albicans strain was responsible for the recurrent infections, but the CARE-2 fingerprint pattern of the isolates exhibited minor genetic alterations, indicating that microevolution of the strains took place during fluconazole therapy. In the isolates from patient 1, enhanced mRNA levels of the MDR1 gene, encoding a multiple drug resistance protein from the superfamily of major facilitators, and constitutive high expression of the ERG11 gene, coding for the drug target enzyme sterol 14alpha-demethylase, correlated with a stepwise development of fluconazole resistance. The resistant strains exhibited reduced accumulation of fluconazole and, for the last in the series, a slight increase in drug needed to inhibit sterol 14alpha-demethylation in vitro. In the isolates from patient 2, increased MDR1 mRNA levels and the change from heterozygosity to homozygosity for a mutant form of the ERG11 gene correlated with continuously decreased drug susceptibility. In this series, reduced drug accumulation and increased resistance in the target enzyme activity, sterol 14alpha-demethylase, were observed. These results demonstrate that different molecular mechanisms contribute to a gradual development of fluconazole resistance in C. albicans.

341 citations

Journal ArticleDOI
TL;DR: It is shown analytically that ‘dependence asymmetries’ between two species only reflect variation in their total observation frequencies, and that niche-based and impact-based interpretations may help to bridge terminological and conceptual gaps between network pattern analyses and traditional community ecology.

341 citations

Journal ArticleDOI
TL;DR: Conditional dependence of cTBS-induced depression of corticospinal excitability on prior neuronal activation suggests that the TBS-model of synaptic plasticity may be closer to synaptic mechanisms than previously thought.
Abstract: Metaplasticity refers to the activity-dependent modification of the ability of synapses to undergo subsequent potentiation or depression, and is thought to maintain homeostasis of cortical excitability. Continuous magnetic theta-burst stimulation (cTBS; 50 Hz-bursts of 3 subthreshold magnetic stimuli repeated at 5 Hz) is a novel repetitive magnetic stimulation protocol used to model changes of synaptic efficacy in human motor cortex. Here we examined the influence of prior activity on the effects induced by cTBS. Without prior voluntary motor activation, application of cTBS for a duration of 20 s (cTBS300) facilitated subsequently evoked motor potentials (MEP) recorded from APB muscle. In contrast, MEP-size was depressed, when cTBS300 was preceded by voluntary activity of sufficient duration. Remarkably, even without prior voluntary activation, depression of MEP-size was induced when cTBS was extended over 40 s. These findings provide in vivo evidence for extremely rapid metaplasticity reversing potentiation of corticospinal excitability to depression. Polarity-reversing metaplasticity adds considerable complexity to the brain's response toward new experiences. Conditional dependence of cTBS-induced depression of corticospinal excitability on prior neuronal activation suggests that the TBS-model of synaptic plasticity may be closer to synaptic mechanisms than previously thought.

341 citations

Journal ArticleDOI
TL;DR: It is suggested that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions.
Abstract: The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.

341 citations


Authors

Showing all 31653 results

NameH-indexPapersCitations
Peer Bork206697245427
Cyrus Cooper2041869206782
D. M. Strom1763167194314
George P. Chrousos1691612120752
David A. Bennett1671142109844
Marc W. Kirschner162457102145
Josef M. Penninger154700107295
William A. Catterall15453683561
Rui Zhang1512625107917
Niels Birbaumer14283577853
Kim Nasmyth14229459231
James J. Gross139529100206
Michael Schmitt1342007114667
Jean-Luc Brédas134102685803
Alexander Schmidt134118583879
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

94% related

University of Pittsburgh
201K papers, 9.6M citations

94% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Duke University
200.3K papers, 10.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022398
20212,960
20202,899
20192,714
20182,447