scispace - formally typeset
Search or ask a question
Institution

University of Würzburg

EducationWurzburg, Bayern, Germany
About: University of Würzburg is a education organization based out in Wurzburg, Bayern, Germany. It is known for research contribution in the topics: Population & CAS Registry Number. The organization has 31437 authors who have published 62203 publications receiving 2337033 citations. The organization is also known as: Julius-Maximilians-Universität Würzburg & Würzburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that motoneurons isolated from an SMA mouse model exhibit normal survival, but reduced axon growth, and data suggest that a complex of Smn with its binding partner hnRNP R interacts with β-actin mRNA and translocates to axons and growth cones of mot oneurons.
Abstract: Spinal muscular atrophy (SMA), a common autosomal recessive form of motoneuron disease in infants and young adults, is caused by mutations in the survival motoneuron 1 (SMN1) gene. The corresponding gene product is part of a multiprotein complex involved in the assembly of spliceosomal small nuclear ribonucleoprotein complexes. It is still not understood why reduced levels of the ubiquitously expressed SMN protein specifically cause motoneuron degeneration. Here, we show that motoneurons isolated from an SMA mouse model exhibit normal survival, but reduced axon growth. Overexpression of Smn or its binding partner, heterogeneous nuclear ribonucleoprotein (hnRNP) R, promotes neurite growth in differentiating PC12 cells. Reduced axon growth in Smn-deficient motoneurons correlates with reduced β-actin protein and mRNA staining in distal axons and growth cones. We also show that hnRNP R associates with the 3′ UTR of β-actin mRNA. Together, these data suggest that a complex of Smn with its binding partner hnRNP R interacts with β-actin mRNA and translocates to axons and growth cones of motoneurons.

628 citations

Journal ArticleDOI
TL;DR: An overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroPTosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression is provided.
Abstract: Ferroptosis is a recently recognized cell death modality that is morphologically, biochemically and genetically distinct from other forms of cell death and that has emerged to play an important role in cancer biology. Recent discoveries have highlighted the metabolic plasticity of cancer cells and have provided intriguing insights into how metabolic rewiring is a critical event for the persistence, dedifferentiation and expansion of cancer cells. In some cases, this metabolic reprogramming has been linked to an acquired sensitivity to ferroptosis, thus opening up new opportunities to treat therapy-insensitive tumours. However, it is not yet clear what metabolic determinants are critical for therapeutic resistance and evasion of immune surveillance. Therefore, a better understanding of the processes that regulate ferroptosis sensitivity should ultimately aid in the discovery of novel therapeutic strategies to improve cancer treatment. In this Perspectives article, we provide an overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression.

625 citations

Journal ArticleDOI
TL;DR: The characterization of 5-HTT gene will aid to advance molecular pharmacologic studies of5-HT uptake regulation and facilitate investigations of its role in psychiatric disorders.
Abstract: The gene encoding the human serotonin transporter (5-HTT) has been isolated and characterized. The human 5-HTT gene is composed of 14 exons spanning approximately 31 kb. The sequence of all exons including adjacent intronic sequences and a tandem repeat DNA polymorphism (VNTR) has been determined and deposited in the EMBL/GenBank data base with the accession numbers X76753 to X76762. The characterization of 5-HTT gene will aid to advance molecular pharmacologic studies of 5-HT uptake regulation and facilitate investigations of its role in psychiatric disorders.

625 citations

Journal ArticleDOI
TL;DR: Findings support the view that LTP‐like mechanisms may underlie the cortical plasticity induced by IPAS, as motor evoked potentials induced by unconditioned, single TMS pulses increased after IPAS.
Abstract: Associative stimulation has been shown to enhance excitability in the human motor cortex (Stefan et al. 2000); however, little is known about the underlying mechanisms. An interventional paired associative stimulation (IPAS) was employed consisting of repetitive application of single afferent electric stimuli, delivered to the right median nerve, paired with single pulse transcranial magnetic stimulation (TMS) over the optimal site for activation of the abductor pollicis brevis muscle (APB) to generate approximately synchronous events in the primary motor cortex. Compared to baseline, motor evoked potentials (MEPs) induced by unconditioned, single TMS pulses increased after IPAS. By contrast, intracortical inhibition, assessed using (i) a suprathreshold test TMS pulse conditioned by a subthreshold TMS pulse delivered 3 ms before the test pulse, and (ii) a suprathreshold test TMS pulse conditioned by afferent median nerve stimulation delivered 25 ms before the TMS pulse, remained unchanged when assessed with appropriately matching test stimulus intensities. The increase of single-pulse TMS-evoked MEP amplitudes was blocked when IPAS was performed under the influence of dextromethorphan, an N-methyl-d-aspartate (NMDA) receptor antagonist known to block long-term potentiation (LTP). Further experiments employing the double-shock TMS protocol suggested that the afferent pulse, as one component of the IPAS protocol, induced disinhibition of the primary motor cortex at the time when the TMS pulse, as the other component of IPAS, was delivered. Together, these findings support the view that LTP-like mechanisms may underlie the cortical plasticity induced by IPAS.

623 citations


Authors

Showing all 31653 results

NameH-indexPapersCitations
Peer Bork206697245427
Cyrus Cooper2041869206782
D. M. Strom1763167194314
George P. Chrousos1691612120752
David A. Bennett1671142109844
Marc W. Kirschner162457102145
Josef M. Penninger154700107295
William A. Catterall15453683561
Rui Zhang1512625107917
Niels Birbaumer14283577853
Kim Nasmyth14229459231
James J. Gross139529100206
Michael Schmitt1342007114667
Jean-Luc Brédas134102685803
Alexander Schmidt134118583879
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

94% related

University of Pittsburgh
201K papers, 9.6M citations

94% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Duke University
200.3K papers, 10.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022398
20212,960
20202,899
20192,714
20182,447