scispace - formally typeset
Search or ask a question
Institution

University of York

EducationYork, York, United Kingdom
About: University of York is a education organization based out in York, York, United Kingdom. It is known for research contribution in the topics: Population & Health care. The organization has 22089 authors who have published 56925 publications receiving 2458285 citations. The organization is also known as: York University & Ebor..


Papers
More filters
Journal ArticleDOI
07 Jun 2007-Trials
TL;DR: This practical guide should improve the quality of the analysis and subsequent interpretation of systematic reviews and meta-analyses that include time-to-event outcomes and provide a corresponding, easy- to-use calculations spreadsheet, to facilitate the computational aspects.
Abstract: In systematic reviews and meta-analyses, time-to-event outcomes are most appropriately analysed using hazard ratios (HRs). In the absence of individual patient data (IPD), methods are available to obtain HRs and/or associated statistics by carefully manipulating published or other summary data. Awareness and adoption of these methods is somewhat limited, perhaps because they are published in the statistical literature using statistical notation. This paper aims to 'translate' the methods for estimating a HR and associated statistics from published time-to-event-analyses into less statistical and more practical guidance and provide a corresponding, easy-to-use calculations spreadsheet, to facilitate the computational aspects. A wider audience should be able to understand published time-to-event data in individual trial reports and use it more appropriately in meta-analysis. When faced with particular circumstances, readers can refer to the relevant sections of the paper. The spreadsheet can be used to assist them in carrying out the calculations. The methods cannot circumvent the potential biases associated with relying on published data for systematic reviews and meta-analysis. However, this practical guide should improve the quality of the analysis and subsequent interpretation of systematic reviews and meta-analyses that include time-to-event outcomes.

4,641 citations

Journal ArticleDOI
TL;DR: The concept of working memory proposes that a dedicated system maintains and stores information in the short term, and that this system underlies human thought processes.
Abstract: The concept of working memory proposes that a dedicated system maintains and stores information in the short term, and that this system underlies human thought processes. Current views of working memory involve a central executive and two storage systems: the phonological loop and the visuospatial sketchpad. Although this basic model was first proposed 30 years ago, it has continued to develop and to stimulate research and debate. The model and the most recent results are reviewed in this article.

4,556 citations

Journal ArticleDOI
Theo Vos1, Ryan M Barber1, Brad Bell1, Amelia Bertozzi-Villa1  +686 moreInstitutions (287)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as mentioned in this paper, the authors estimated the quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.

4,510 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: This framework is used to discuss why the metacommunity concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples.
Abstract: The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch-dynamic view, the species-sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio-temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.

4,266 citations


Authors

Showing all 22432 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Eric R. Kandel184603113560
Ian J. Deary1661795114161
Elio Riboli1581136110499
Claude Bouchard1531076115307
Robert Plomin151110488588
Kevin J. Gaston15075085635
John R. Hodges14981282709
Myrna M. Weissman149772108259
Jeffrey A. Lieberman14570685306
Howard L. Weiner144104791424
Dan J. Stein1421727132718
Jedd D. Wolchok140713123336
Bernard Henrissat139593100002
Joseph E. LeDoux13947891500
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

95% related

University of Bristol
113.1K papers, 4.9M citations

95% related

University of Birmingham
115.3K papers, 4.3M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

King's College London
113.1K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023185
2022466
20213,259
20203,377
20193,032
20182,810