scispace - formally typeset
Search or ask a question
Institution

University of Zurich

EducationZurich, Switzerland
About: University of Zurich is a education organization based out in Zurich, Switzerland. It is known for research contribution in the topics: Population & Medicine. The organization has 50842 authors who have published 124042 publications receiving 5304521 citations. The organization is also known as: UZH & Uni Zurich.


Papers
More filters
Journal ArticleDOI
10 Nov 2011-Nature
TL;DR: This work presents a molecule with four functional units—the authors' previously reported rotary motors—that undergo continuous and defined conformational changes upon sequential electronic and vibrational excitation and provides a starting point for the exploration of more sophisticated molecular mechanical systems with directionally controlled motion.
Abstract: Any future artificial transporters and robots operating at the nanoscale are likely to require molecules capable of directional translational movement over a surface. Even the design of such molecules is a daunting task, however, as they need to be able to use light, chemical or electrical energy to modulate their interaction with the surface in a way that generates directional motion. Kudernac et al. now unveil just such a molecule, made by attaching four rotary motor units to a central axis. Inelastic electron tunnelling induces conformational changes in the rotors and propels the molecule across a copper surface. By changing the direction of the rotary motion of individual motor units, the self-propelling molecular 'four-wheeler' structure can follow random or preferentially linear trajectories. This design provides a starting point for the exploration of more sophisticated molecular mechanical systems, perhaps with complete control over their direction of motion. Propelling single molecules in a controlled manner along an unmodified surface remains extremely challenging because it requires molecules that can use light, chemical or electrical energy to modulate their interaction with the surface in a way that generates motion. Nature’s motor proteins1,2 have mastered the art of converting conformational changes into directed motion, and have inspired the design of artificial systems3 such as DNA walkers4,5 and light- and redox-driven molecular motors6,7,8,9,10,11. But although controlled movement of single molecules along a surface has been reported12,13,14,15,16, the molecules in these examples act as passive elements that either diffuse along a preferential direction with equal probability for forward and backward movement or are dragged by an STM tip. Here we present a molecule with four functional units—our previously reported rotary motors6,8,17—that undergo continuous and defined conformational changes upon sequential electronic and vibrational excitation. Scanning tunnelling microscopy confirms that activation of the conformational changes of the rotors through inelastic electron tunnelling propels the molecule unidirectionally across a Cu(111) surface. The system can be adapted to follow either linear or random surface trajectories or to remain stationary, by tuning the chirality of the individual motor units. Our design provides a starting point for the exploration of more sophisticated molecular mechanical systems with directionally controlled motion.

653 citations

Journal ArticleDOI
TL;DR: The 100th anniversary of the British Ecological Society in 2013 is an opportune moment to reflect on the current status of ecology as a science and look forward to high-light priorities for future work.
Abstract: Summary 1. Fundamental ecological research is both intrinsically interesting and provides the basic knowledge required to answer applied questions of importance to the management of the natural world. The 100th anniversary of the British Ecological Society in 2013 is an opportune moment to reflect on the current status of ecology as a science and look forward to high-light priorities for future work.

652 citations

Journal ArticleDOI
TL;DR: A general scheme for practice in Europe could be provided and a set of recommendations for the conceptualisation and management of hyperkinetic disorder and attention deficit/hyperactivity disorder (ADHD) are presented.
Abstract: BACKGROUND: The validity of clinical guidelines changes over time, because new evidence-based knowledge and experience develop OBJECTIVE: Hence, the European clinical guidelines on hyperkinetic disorder from 1998 had to be evaluated and modified METHOD: Discussions at the European Network for Hyperkinetic Disorders (EUNETHYDIS) and iterative critique of each clinical analysis Guided by evidence-based information and based on evaluation (rather than metaanalysis) of the scientific evidence a group of child psychiatrists and psychologists from several European countries updated the guidelines of 1998 When reliable information is lacking the group gives a clinical consensus when it could be found among themselves RESULTS: The group presents here a set of recommendations for the conceptualization and management of hyperkinetic disorder and attention deficit/hyperactivity disorder (ADHD) CONCLUSION: A general scheme for practice in Europe could be provided, on behalf of the European Society for Child and Adolescent Psychiatry (ESCAP)

652 citations

Journal ArticleDOI
TL;DR: This work experimentally manipulates ants' outbound trajectories to elucidate the ant's way of computing its mean home vector and shows that the ants solve this path integration problem not by performing a true vector summation but by employing a computationally simple approximation.
Abstract: Foraging desert ants, Cataglyphis fortis, continually keep track of their own posotions relative to home— i.e., integrate their tortuous outbound routes and return home along straight (inbound) routes. By experimentally manipulating the ants' outbound trajectories we show that the ants solve this path integration problem not by performing a true vector summation (as a human navigator does) but by employing a computationally simple approximation. This approximation is characterized by small, but systematic, navigational errors that helped us elucidate the ant's way of computing its mean home vector.

651 citations

Journal ArticleDOI
TL;DR: It is demonstrated that, as in the rodent, children who experienced early maternal deprivation exhibit early emergence of mature amygdala–prefrontal connectivity, suggesting that accelerated amygdala–mPFC development is an ontogenetic adaptation in response to early adversity.
Abstract: Under typical conditions, medial prefrontal cortex (mPFC) connections with the amygdala are immature during childhood and become adult-like during adolescence. Rodent models show that maternal deprivation accelerates this development, prompting examination of human amygdala–mPFC phenotypes following maternal deprivation. Previously institutionalized youths, who experienced early maternal deprivation, exhibited atypical amygdala– mPFC connectivity. Specifically, unlike the immature connectivity (positive amygdala–mPFC coupling) of comparison children, children with a history of early adversity evidenced mature connectivity (negative amygdala–mPFC coupling) and thus, resembled the adolescent phenotype. This connectivity pattern was mediated by the hormone cortisol, suggesting that stress-induced modifications of the hypothalamic–pituitary–adrenal axis shape amygdala–mPFC circuitry. Despite being age-atypical, negative amygdala–mPFC coupling conferred some degree of reduced anxiety, although anxiety was still significantly higher in the previously institutionalized group. These findings suggest that accelerated amygdala–mPFC development is an ontogenetic adaptation in response to early adversity.

650 citations


Authors

Showing all 51384 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
Peer Bork206697245427
Thomas C. Südhof191653118007
Stuart H. Orkin186715112182
Ruedi Aebersold182879141881
Tadamitsu Kishimoto1811067130860
Stanley B. Prusiner16874597528
Yang Yang1642704144071
Tomas Hökfelt158103395979
Dan R. Littman157426107164
Hans Lassmann15572479933
Matthias Egger152901184176
Lorenzo Bianchini1521516106970
Robert M. Strieter15161273040
Ashok Kumar1515654164086
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Yale University
220.6K papers, 12.8M citations

93% related

Harvard University
530.3K papers, 38.1M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of Pittsburgh
201K papers, 9.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023265
20221,039
20218,997
20208,398
20197,336
20186,832