scispace - formally typeset
Search or ask a question
Institution

University of Zurich

EducationZurich, Switzerland
About: University of Zurich is a education organization based out in Zurich, Switzerland. It is known for research contribution in the topics: Population & Transplantation. The organization has 50842 authors who have published 124042 publications receiving 5304521 citations. The organization is also known as: UZH & Uni Zurich.


Papers
More filters
Journal ArticleDOI
Haidong Wang1, Zulfiqar A Bhutta2, Zulfiqar A Bhutta3, Matthew M Coates1  +610 moreInstitutions (263)
TL;DR: The Global Burden of Disease 2015 Study provides an analytical framework to comprehensively assess trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time and decomposed the changes in under- 5 mortality to changes in SDI at the global level.

591 citations

Journal ArticleDOI
21 Feb 2013-Nature
TL;DR: The combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers, a general mechanism for arresting cancer progression.
Abstract: Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.

590 citations

Journal ArticleDOI
TL;DR: The presence of p62 along with other stress proteins and ubiquitin in cytoplasmic inclusions indicates deposition as aggregates as a third line of defense against misfolded proteins in addition to refolding and degradation.
Abstract: Exposure of cells to stress, particularly oxidative stress, leads to misfolding of proteins and, if they are not refolded or degraded, to cytoplasmic protein aggregates. Protein aggregates are characteristic features of a variety of chronic toxic and degenerative diseases, such as Mallory bodies (MBs) in hepatocytes in alcoholic and non-alcoholic steatohepatitis, neurofibrillary tangles in neurons in Alzheimer's, and Lewy bodies in Parkinson's disease. Using 2D gel electrophoresis and mass spectrometry, we identified p62 as a novel MB component. p62 and cytokeratins (CKs) are major MB constituents; HSP 70, HSP 25, and ubiquitinated CKs are also present. These proteins characterize MBs as a prototype of disease-associated cytoplasmic inclusions generated by stress-induced protein misfolding. As revealed by transfection of tissue culture cells overexpressed p62 did not induce aggregation of regular CK filaments but selectively bound to misfolded and ubiquitinated CKs. The general role of p62 in the cellular response to misfolded proteins was substantiated by detection of p62 in other cytoplasmic inclusions, such as neurofibrillary tangles, Lewy bodies, Rosenthal fibers, intracytoplasmic hyaline bodies in hepatocellular carcinoma, and alpha1-antitrypsin aggregates. The presence of p62 along with other stress proteins and ubiquitin in cytoplasmic inclusions indicates deposition as aggregates as a third line of defense against misfolded proteins in addition to refolding and degradation.

590 citations

Journal ArticleDOI
TL;DR: A key regulator of hepatocellular bile salt homeostasis is the bile acid receptor/farnesoid X receptor FXR, which activates transcription of the BSEP and OATP8 genes and of the small heterodimer partner 1 (SHP) as mentioned in this paper.

589 citations

Journal ArticleDOI
18 Mar 1982-Nature
TL;DR: It is reported that pure IGF I stimulates the growth of hypophysectomized rats in a dose-dependent manner, which strongly supports the notion that the action of growth hormone is mediated by peptides of the somatomedin family.
Abstract: Although growth hormone stimulates the growth of hypophysectomized rats, it has long been proposed1,2 that the effects are not direct but instead are mediated by the somatomedin peptides. Two of these are insulin-like growth factor I (IGF I) and insulin-like growth factor II (IGF II)3, so called because they are closely related to insulin in structure4,5. IGF I and IGF II have somatomedin activity in vitro6,7 but until now insufficient amounts of the peptides have been available to test their in vivo activity. We now report that pure IGF I stimulates the growth of hypophysectomized rats in a dose-dependent manner. This strongly supports the notion that the action of growth hormone is mediated by peptides of the somatomedin family.

589 citations


Authors

Showing all 51384 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
Peer Bork206697245427
Thomas C. Südhof191653118007
Stuart H. Orkin186715112182
Ruedi Aebersold182879141881
Tadamitsu Kishimoto1811067130860
Stanley B. Prusiner16874597528
Yang Yang1642704144071
Tomas Hökfelt158103395979
Dan R. Littman157426107164
Hans Lassmann15572479933
Matthias Egger152901184176
Lorenzo Bianchini1521516106970
Robert M. Strieter15161273040
Ashok Kumar1515654164086
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Yale University
220.6K papers, 12.8M citations

93% related

Harvard University
530.3K papers, 38.1M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of Pittsburgh
201K papers, 9.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023265
20221,039
20218,997
20208,398
20197,336
20186,832