scispace - formally typeset
Search or ask a question
Institution

University of Zurich

EducationZurich, Switzerland
About: University of Zurich is a education organization based out in Zurich, Switzerland. It is known for research contribution in the topics: Population & Transplantation. The organization has 50842 authors who have published 124042 publications receiving 5304521 citations. The organization is also known as: UZH & Uni Zurich.


Papers
More filters
Journal ArticleDOI
07 May 2004-Science
TL;DR: It is demonstrated that inhibition of a specific glycine receptor subtype (GlyR α3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization and may provide a previously unrecognized molecular target in pain therapy.
Abstract: Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.

573 citations

Journal ArticleDOI
TL;DR: It is emphasised that patients who are considered candidates for a multimodal approach should be included in a prospective trial at a specialised centre, and a three step pre-treatment assessment is proposed.
Abstract: Malignant pleural mesothelioma (MPM) is a rare tumour but with increasing incidence and a poor prognosis. In 2008, the European Respiratory Society/European Society of Thoracic Surgeons Task Force brought together experts to propose practical and up-to-dated guidelines on the management of MPM. To obtain an earlier and reliable diagnosis of MPM, the experts recommend performing thoracoscopy, except in cases of pre-operative contraindication or pleural symphysis. The standard staining procedures are insufficient in similar to 10% of cases. Therefore, we propose using specific immunohistochemistry markers on pleural biopsies. In the absence of a uniform, robust and validated staging system, we advice use of the most recent TNM based classification, and propose a three step pre-treatment assessment. Patient's performance status and histological subtype are currently the only prognostic factors of clinical importance in the management of MPM. Other potential parameters should be recorded at baseline and reported in clinical trials. MPM exhibits a high resistance to chemotherapy and only a few patients are candidates for radical surgery. New therapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasise that patients who are considered candidates for a multimodal approach should be included in a prospective trial at a specialised centre.

573 citations

Journal ArticleDOI
08 May 2014-Nature
TL;DR: Reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen, and the emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the Cycling of major elements on broad spatial scales.
Abstract: The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.

573 citations

Journal ArticleDOI
TL;DR: Recurrent excitatory synapses between CA3 cells display associative potentiation and depression, and the sign of the change in synaptic strength is a function of the relative timing of pre‐ and postsynaptic action potentials.
Abstract: 1. Long-term potentiation (LTP) and depression (LTD) were investigated at synapses formed by pairs of monosynaptically connected CA3 pyramidal cells in rat hippocampal slice cultures. 2. An N-methyl-D-aspartate (NMDA) receptor-mediated component of the unitary EPSP, elicited at the resting membrane potential in response to single action potentials in an individual CA3 cell, could be isolated pharmacologically. 3. Associative LTP was induced when single presynaptic action potentials were repeatedly paired with 240 ms postsynaptic depolarizing pulses that evoked five to twelve action potentials or with single postsynaptic action potentials evoked near the peak of the unitary EPSP. LTP induction was prevented by an NMDA receptor antagonist. 4. Associative LTD was induced when single presynaptic action potentials were repeatedly elicited with a certain delay after either 240 ms postsynaptic depolarizing pulses or single postsynaptic action potentials. The time window within which presynaptic activity had to occur for LTD induction was dependent on the amount of postsynaptic depolarization. LTD was induced if single pre- and postsynaptic action potentials occurred synchronously. 5. Homosynaptic LTD was induced by 3 Hz tetanization of the presynaptic neuron for 3 min and was blocked by an NMDA receptor antagonist. 6. Depotentiation was produced with stimulation protocols that elicit either homosynaptic or associative LTD. 7. Recurrent excitatory synapses between CA3 cells display associative potentiation and depression. The sign of the change in synaptic strength is a function of the relative timing of pre- and postsynaptic action potentials.

573 citations

Journal ArticleDOI
TL;DR: It is demonstrated that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome, and this is the first study to report mycorrhizal keystoneTaxa for agroecosystems.
Abstract: Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2 = 0.366; P < 0.0001) between agricultural intensification and root fungal network connectivity. The occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH, and mycorrhizal colonization. The majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants and belong to the orders Glomerales, Paraglomerales, and Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils was also significantly higher under organic farming. To our knowledge, this is the first study to report mycorrhizal keystone taxa for agroecosystems, and we demonstrate that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome.

573 citations


Authors

Showing all 51384 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
Peer Bork206697245427
Thomas C. Südhof191653118007
Stuart H. Orkin186715112182
Ruedi Aebersold182879141881
Tadamitsu Kishimoto1811067130860
Stanley B. Prusiner16874597528
Yang Yang1642704144071
Tomas Hökfelt158103395979
Dan R. Littman157426107164
Hans Lassmann15572479933
Matthias Egger152901184176
Lorenzo Bianchini1521516106970
Robert M. Strieter15161273040
Ashok Kumar1515654164086
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Yale University
220.6K papers, 12.8M citations

93% related

Harvard University
530.3K papers, 38.1M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of Pittsburgh
201K papers, 9.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023265
20221,039
20218,997
20208,398
20197,336
20186,832