scispace - formally typeset
Search or ask a question
Institution

University of Zurich

EducationZurich, Switzerland
About: University of Zurich is a education organization based out in Zurich, Switzerland. It is known for research contribution in the topics: Population & Medicine. The organization has 50842 authors who have published 124042 publications receiving 5304521 citations. The organization is also known as: UZH & Uni Zurich.


Papers
More filters
Journal ArticleDOI
22 Oct 2015-Nature
TL;DR: Biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity toClimate events.
Abstract: It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide1. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities2. However, subsequent experimental tests produced mixed results3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability14, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

917 citations

Journal ArticleDOI
TL;DR: This review describes how C. elegans models can be used to advance the understanding of the molecular mechanisms of drug action and disease pathogenesis and how these models are amenable to whole-organism high-throughput compound screens and large-scale target validation.
Abstract: Despite its apparent simplicity, the nematode worm Caenorhabditis elegans has developed into an important model for biomedical research, particularly in the functional characterization of novel drug targets that have been identified using genomics technologies. The cellular complexity and the conservation of disease pathways between C. elegans and higher organisms, together with the simplicity and cost-effectiveness of cultivation, make for an effective in vivo model that is amenable to whole-organism high-throughput compound screens and large-scale target validation. This review describes how C. elegans models can be used to advance our understanding of the molecular mechanisms of drug action and disease pathogenesis.

916 citations

Journal ArticleDOI
TL;DR: The data presented demonstrate the existence of membrane proteins with potent nonpermissive substrate properties and suggest that these proteins might play a crucial inhibitory role during development and regeneration in CNS white matter.
Abstract: Lack of neurite growth in optic nerve explants in vitro has been suggested to be due to nonpermissive substrate properties of higher vertebrate central nervous system (CNS) white matter. We have searched for surface components in CNS white matter, which would prevent neurite growth. CNS, but not peripheral nervous system (PNS) myelin fractions from rat and chick were highly nonpermissive substrates in vitro. We have used an in vitro spreading assay with 3T3 cells to quantify substrate qualities of membrane fractions and of isolated membrane proteins reconstituted in artificial lipid vesicles. CNS myelin nonpermissiveness was abolished by treatment with proteases and was not associated with myelin lipid. Nonpermissive proteins were found to be membrane bound and yielded highly nonpermissive substrates upon reconstitution into liposomes. Size fractionation of myelin protein by SDS-PAGE revealed two highly nonpermissive minor protein fractions of Mr 35 and 250-kD. Removal of 35- and of 250-kD protein fractions yielded a CNS myelin protein fraction with permissive substrate properties. Supplementation of permissive membrane protein fractions (PNS, liver) with low amounts of 35- or of 250-kD CNS myelin protein was sufficient to generate highly nonpermissive substrates. Inhibitory 35- and 250-kD proteins were found to be enriched in CNS white matter and were found in optic nerve cell cultures which contained highly nonpermissive, differentiated oligodendrocytes. The data presented demonstrate the existence of membrane proteins with potent nonpermissive substrate properties. Distribution and properties suggest that these proteins might play a crucial inhibitory role during development and regeneration in CNS white matter.

913 citations

Journal ArticleDOI
TL;DR: Three typical experiments are discussed that illustrate the potential of the slice-culture technique and indicate that, due to their high neuronal connectivity, slice cultures provide a very useful tool for studying the properties of synaptic transmission between monosynaptically coupled cell pairs.

913 citations

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1334 moreInstitutions (150)
TL;DR: In this paper, the authors reported the observation of a compact binary coalescence involving a 222 −243 M ⊙ black hole and a compact object with a mass of 250 −267 M ⋆ (all measurements quoted at the 90% credible level) The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network.
Abstract: We report the observation of a compact binary coalescence involving a 222–243 M ⊙ black hole and a compact object with a mass of 250–267 M ⊙ (all measurements quoted at the 90% credible level) The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network The source was localized to 185 deg2 at a distance of ${241}_{-45}^{+41}$ Mpc; no electromagnetic counterpart has been confirmed to date The source has the most unequal mass ratio yet measured with gravitational waves, ${0112}_{-0009}^{+0008}$, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system The dimensionless spin of the primary black hole is tightly constrained to ≤007 Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

913 citations


Authors

Showing all 51384 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
Peer Bork206697245427
Thomas C. Südhof191653118007
Stuart H. Orkin186715112182
Ruedi Aebersold182879141881
Tadamitsu Kishimoto1811067130860
Stanley B. Prusiner16874597528
Yang Yang1642704144071
Tomas Hökfelt158103395979
Dan R. Littman157426107164
Hans Lassmann15572479933
Matthias Egger152901184176
Lorenzo Bianchini1521516106970
Robert M. Strieter15161273040
Ashok Kumar1515654164086
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Yale University
220.6K papers, 12.8M citations

93% related

Harvard University
530.3K papers, 38.1M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of Pittsburgh
201K papers, 9.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023265
20221,039
20218,997
20208,398
20197,336
20186,832