scispace - formally typeset
Search or ask a question
Institution

Uppsala University

EducationUppsala, Sweden
About: Uppsala University is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Insulin. The organization has 36485 authors who have published 107509 publications receiving 4220668 citations. The organization is also known as: Uppsala universitet & uu.se.
Topics: Population, Insulin, Thin film, Poison control, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the structural, electronic, magnetic, and ferroelectric properties of a cubic perovskite-type reference lattice were predicted using accurate density functional calculations and the equilibrium structural parameters were found to be in very good agreement with the experimental findings.
Abstract: The magnetoelectric behavior of $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ has been explored on the basis of accurate density functional calculations. We are able to predict structural, electronic, magnetic, and ferroelectric properties of $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ correctly without including any strong correlation effect in the calculation. Unlike earlier calculations, the equilibrium structural parameters are found to be in very good agreement with the experimental findings. In particular, the present calculation correctly reproduced experimentally observed elongation of cubic perovskitelike lattice along the [111] direction. At high pressure we predicted a pressure-induced structural transition from rhombohedral $(R3c)$ to an orthorhombic $(Pnma)$ structure. The total-energy calculations at expanded lattice show two lower energy ferroelectric phases (with monoclinic $Cm$ and tetragonal $P4mm$ structures), closer in energy to the ground-state phase. Spin-polarized band-structure calculations show that $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ will be an insulator in $A$- and $G$-type antiferromagnetic phases and a metal in $C$-type antiferromagnetic, ferromagnetic configurations, and in the nonmagnetic state. Chemical bonding in $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ has been analyzed using partial density of states, charge density, charge transfer, electron localization function, Born-effective-charge tensor, and crystal orbital Hamiltonian population analyses. Our electron localization function analysis shows that stereochemically active lone-pair electrons are present at the Bi sites which are responsible for displacements of the Bi atoms from the centrosymmetric to the noncentrosymmetric structure and hence the ferroelectricity. A large ferroelectric polarization of $88.7\phantom{\rule{0.3em}{0ex}}\ensuremath{\mu}\mathrm{C}∕{\mathrm{cm}}^{2}$ is predicted in accordance with recent experimental findings, but differing by an order of magnitude from earlier experimental values. The strong spontaneous polarization is related to the large values of the Born-effective charges at the Bi sites along with their large displacement along the [111] direction of the cubic perovskite-type reference structure. Our polarization analysis shows that partial contributions to polarization from the Fe and O atoms almost cancel each other and the net polarization present in $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ mainly $(g98%)$ originates from Bi atoms. We found that the large scatter in experimentally reported polarization values in $\mathrm{Bi}\mathrm{Fe}{\mathrm{O}}_{3}$ is associated with the large anisotropy in the spontaneous polarization.

586 citations

Journal ArticleDOI
TL;DR: A large meta-analysis combining genome-wide and custom high-density genotyping array data identifies 63 new susceptibility loci for prostate cancer, enhancing fine-mapping efforts and providing insights into the underlying biology of PrCa1.
Abstract: Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10−9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55–2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04–6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1. A large meta-analysis combining genome-wide and custom high-density genotyping array data identifies 63 new susceptibility loci for prostate cancer, enhancing fine-mapping efforts and providing insights into the underlying biology.

585 citations

Journal ArticleDOI
TL;DR: The Vienna atomic line database (VALD) as discussed by the authors is a collection of critically evaluated laboratory parameters for individual atomic transitions, complemented by theoretical calculations, used by astronomers for stellar spectroscopic studies.
Abstract: Vienna atomic line database (VALD) is a collection of critically evaluated laboratory parameters for individual atomic transitions, complemented by theoretical calculations. VALD is actively used by astronomers for stellar spectroscopic studies—model atmosphere calculations, atmospheric parameter determinations, abundance analysis etc. The two first VALD releases contained parameters for atomic transitions only. In a major upgrade of VALD—VALD3, publically available from spring 2014, atomic data was complemented with parameters of molecular lines. The diatomic molecules C2, CH, CN, CO, OH, MgH, SiH, TiO are now included. For each transition VALD provides species name, wavelength, energy, quantum number J and Lande-factor of the lower and upper levels, radiative, Stark and van der Waals damping factors and a full description of electronic configurarion and term information of both levels. Compared to the previous versions we have revised and verify all of the existing data and added new measurements and calculations for transitions in the range between 20 A and 200 microns. All transitions were complemented with term designations in a consistent way and electron configurations when available. All data were checked for consistency: listed wavelength versus Ritz, selection rules etc. A new bibliographic system keeps track of literature references for each parameter in a given transition throughout the merging process so that every selected data entry can be traced to the original source. The query language and the extraction tools can now handle various units, vacuum and air wavelengths. In the upgrade process we had an intensive interaction with data producers, which was very helpful for improving the quality of the VALD content.

585 citations

Journal ArticleDOI
TL;DR: It is shown that neonatal exposure to PBDE 99 and PBDE 47 can cause permanent aberrations in spontaneous behavior, evident in 2- and 4-month-old animals, and changes were dose-response related.
Abstract: Brominated flame retardants are a novel group of global environmental contaminants. Within this group the polybrominated diphenyl ethers (PBDE) constitute one class of many that are found in electr...

584 citations

Journal ArticleDOI
Federica Spoto1, Federica Spoto2, Paolo Tanga2, Francois Mignard2  +498 moreInstitutions (86)
TL;DR: In this paper, the authors describe the processing of the Gaia DR2 data, and describe the criteria used to select the sample published in Gaia DR 2, and explore the data set to assess its quality.
Abstract: Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations.Aims. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality.Methods. To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP).Results. The overall astrometric performance is close to the expectations, with an optimal range of brightness G ~ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ~ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects.

584 citations


Authors

Showing all 36854 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lewis C. Cantley196748169037
Darien Wood1602174136596
Kaj Blennow1601845116237
Christopher J. O'Donnell159869126278
Tomas Hökfelt158103395979
Peter G. Schultz15689389716
Frederik Barkhof1541449104982
Deepak L. Bhatt1491973114652
Svante Pääbo14740784489
Jan-Åke Gustafsson147105898804
Hans-Olov Adami14590883473
Hermann Kolanoski145127996152
Kjell Fuxe142147989846
Jan Conrad14182671445
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

University of Minnesota
257.9K papers, 11.9M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023240
2022643
20216,079
20205,811
20195,393
20185,067