scispace - formally typeset
Search or ask a question
Institution

Uppsala University

EducationUppsala, Sweden
About: Uppsala University is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Gene. The organization has 36485 authors who have published 107509 publications receiving 4220668 citations. The organization is also known as: Uppsala universitet & uu.se.


Papers
More filters
Book
01 Jan 2000
TL;DR: The journal Real-Time Systems publishes papers, short papers and correspondence articles that concentrate on real-time computing principles and applications, including requirements engineering, specification and verification techniques, design methods and tools, programming languages, operating systems, scheduling algorithms, architecture, hardware and interfacing.
Abstract: From the Publisher: Real-Time Systems is both a valuable reference for professionals and an advanced text for Computer Science and Computer Engineering students. Real world real-time applications based on research and practice State-of-the-art algorithms and methods for validation Methods for end-to-end scheduling and resource management More than 100 illustrations to enhance understanding Comprehensive treatment of the technology known as RMA (rate-monotonic analysis) methods A supplemental Companion Website www.prenhall.com/liu

435 citations

Journal ArticleDOI
TL;DR: In this article, the loss of Sn as a result of decomposition and evaporat decomposition was identified during the synthesis of CZTS films, which shows great potential for cheap, efficient photovoltaic devices.
Abstract: Cu(2)ZnSnS(4) (CZTS) shows great potential for cheap, efficient photovoltaic devices. However, one problem during synthesis of CZTS films is the loss of Sn as a result of decomposition and evaporat ...

435 citations

Journal ArticleDOI
01 Jan 2001-Genetica
TL;DR: New methods, derived from procedures developed by animal breeding scientists, are described, which can be used to address possible explanations as to why heritable traits under apparently strong directional selection often fail to show the expected evolutionary response.
Abstract: Microevolution, defined as a change in the genetic constitution of a population over time, is considered to be of commonplace occurrence in nature. Its ubiquity can be inferred from the observation that quantitative genetic divergence among populations usually exceeds that to be expected due to genetic drift alone, and from numerous observations and experiments consistent with local adaptation. Experimental manipulations in natural populations have provided evidence that rapid evolutionary responses may occur in the wild. However, there are remarkably few cases where direct observations of natural populations have revealed microevolutionary changes occurring, despite the frequent demonstration of additive genetic variation and strong directional selection for particular traits. Those few cases where responses congruent with expectation have been demonstrated are restricted to changes over one generation. In this article we focus on possible explanations as to why heritable traits under apparently strong directional selection often fail to show the expected evolutionary response. To date, few of these explanations for apparent stasis have been amenable to empirical testing. We describe new methods, derived from procedures developed by animal breeding scientists, which can be used to address these explanations, and illustrate the approach with examples from long-term studies of collared flycatchers (Ficedula albicollis) and red deer (Cervus elaphus). Understanding why most intensively studied natural populations do not appear to be evolving is an important challenge for evolutionary biology.

435 citations

Journal ArticleDOI
TL;DR: In this paper, the authors project the future contribution of mountain glaciers and ice caps to sea-level rise on a global scale, and project their volume changes due to melt in response to transient, spatially differentiated twenty-first century projections of temperature and precipitation from ten global climate models.
Abstract: The contribution to sea-level rise from mountain glaciers and ice caps has grown over the past decades. A projection of their melting during the twenty-first century based on temperature and precipitation projections from ten climate models suggests that by 2100 these glaciers will lose about 21% of their total global volume. The contribution to sea-level rise from mountain glaciers and ice caps has grown over the past decades. They are expected to remain an important component of eustatic sea-level rise for at least another century1,2, despite indications of accelerated wastage of the ice sheets3,4,5. However, it is difficult to project the future contribution of these small-scale glaciers to sea-level rise on a global scale. Here, we project their volume changes due to melt in response to transient, spatially differentiated twenty-first century projections of temperature and precipitation from ten global climate models. We conduct the simulations directly on the more than 120,000 glaciers now available in the World Glacier Inventory6, and upscale the changes to 19 regions that contain all mountain glaciers and ice caps in the world (excluding the Greenland and Antarctic ice sheets). According to our multi-model mean, sea-level rise from glacier wastage by 2100 will amount to 0.124±0.037 m, with the largest contribution from glaciers in Arctic Canada, Alaska and Antarctica. Total glacier volume will be reduced by 21±6%, but some regions are projected to lose up to 75% of their present ice volume. Ice losses on such a scale may have substantial impacts on regional hydrology and water availability7.

435 citations

Journal ArticleDOI
TL;DR: In this article, a large database (7,514 lakes from 6 continents) of DOC concentrations and other parameters that characterize the conditions in the lakes, the catchment, the soil, and the climate was assembled.
Abstract: Dissolved organic carbon (DOC) is a key parameter in lakes that can affect numerous features, including microbial metabolism, light climate, acidity, and primary production. In an attempt to understand the factors that regulate DOC in lakes, we assembled a large database (7,514 lakes from 6 continents) of DOC concentrations and other parameters that characterize the conditions in the lakes, the catchment, the soil, and the climate. DOC concentrations were in the range 0.1–332 mg L21, and the median was 5.71 mg L21. A partial least squares regression explained 48% of the variability in lake DOC and showed that altitude, mean annual runoff, and precipitation were negatively correlated with lake DOC, while conductivity, soil carbon density, and soil C : N ratio were positively related with lake DOC. A multiple linear regression using altitude, mean annual runoff, and soil carbon density as predictors explained 40% of the variability in lake DOC. While lake area and drainage ratio (catchment : lake area) were not correlated to lake DOC in the global data set, these two factors explained significant variation of the residuals of the multiple linear regression model in several regional subsets of data. These results suggest a hierarchical regulation of DOC in lakes, where climatic and topographic characteristics set the possible range of DOC concentrations of a certain region, and catchment and lake properties then regulate the DOC concentration in each individual lake. Dissolved organic carbon (DOC) is a major modulator of the structure and function of lake ecosystems. The DOC pool of lakes consists of both autochthonous DOC (i.e., produced in the lake) and allochthonous DOC (i.e., produced in the catchment), although allochthonous DOC is generally believed to represent the larger fraction of the total DOC in lakes. Due to the dark color of many DOC compounds, DOC affects the thermal structure and

434 citations


Authors

Showing all 36854 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lewis C. Cantley196748169037
Darien Wood1602174136596
Kaj Blennow1601845116237
Christopher J. O'Donnell159869126278
Tomas Hökfelt158103395979
Peter G. Schultz15689389716
Frederik Barkhof1541449104982
Deepak L. Bhatt1491973114652
Svante Pääbo14740784489
Jan-Åke Gustafsson147105898804
Hans-Olov Adami14590883473
Hermann Kolanoski145127996152
Kjell Fuxe142147989846
Jan Conrad14182671445
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

University of Minnesota
257.9K papers, 11.9M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023240
2022643
20216,080
20205,811
20195,393
20185,067