scispace - formally typeset
Search or ask a question
Institution

Uppsala University

EducationUppsala, Sweden
About: Uppsala University is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Gene. The organization has 36485 authors who have published 107509 publications receiving 4220668 citations. The organization is also known as: Uppsala universitet & uu.se.


Papers
More filters
Journal ArticleDOI
01 Jan 1988
TL;DR: The glutathione transferases are recognized as important catalysts in the biotransformation of xenobiotics, including drugs as well as environmental pollutants, and numerous transferases from mammalian tissues, insects, and plants have been isolated and characterized.
Abstract: The glutathione transferases are recognized as important catalysts in the biotransformation of xenobiotics, including drugs as well as environmental pollutants. Multiple forms exist, and numerous transferases from mammalian tissues, insects, and plants have been isolated and characterized. Enzymatic properties, reactions with antibodies, and structural characteristics have been used for classification of the glutathione transferases. The cytosolic mammalian enzymes could be grouped into three distinct classes--Alpha, Mu, and Pi; the microsomal glutathione transferase differs greatly from all the cytosolic enzymes. Members of each enzyme class have been identified in human, rat, and mouse tissues. Comparison of known primary structures of representatives of each class suggests a divergent evolution of the enzyme proteins from a common precursor. Products of oxidative metabolism such as organic hydroperoxides, epoxides, quinones, and activated alkenes are possible "natural" substrates for the glutathione transferases. Particularly noteworthy are 4-hydroxyalkenals, which are among the best substrates found. Homologous series of substrates give information about the properties of the corresponding binding site. The catalytic mechanism and the active-site topology have been probed also by use of chiral substrates. Steady-state kinetics have provided evidence for a "sequential" mechanism.

1,700 citations

Journal ArticleDOI
21 Nov 2013-Nature
TL;DR: In this article, the authors report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity, and obtain global CO2 evasion rates of 1.8(-0.25) and 0.52 Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles.
Abstract: Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(-0.25)(+0.25) petagrams of carbon (Pg C) per year from streams and rivers and 0.32(-0.26)(+0.52) Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

1,696 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared psychophysiological stress recovery and directed attention restoration in natural and urban field settings using repeated measures of ambulatory blood pressure, emotion, and attention collected from 112 randomly assigned young adults.

1,689 citations

Journal ArticleDOI
08 Aug 2013-Blood
TL;DR: Optimal responders to chronic myeloid leukemia treatment should continue therapy indefinitely, with careful surveillance, or they can be enrolled in controlled studies of treatment discontinuation once a deeper molecular response is achieved.

1,679 citations


Authors

Showing all 36854 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lewis C. Cantley196748169037
Darien Wood1602174136596
Kaj Blennow1601845116237
Christopher J. O'Donnell159869126278
Tomas Hökfelt158103395979
Peter G. Schultz15689389716
Frederik Barkhof1541449104982
Deepak L. Bhatt1491973114652
Svante Pääbo14740784489
Jan-Åke Gustafsson147105898804
Hans-Olov Adami14590883473
Hermann Kolanoski145127996152
Kjell Fuxe142147989846
Jan Conrad14182671445
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

University of Minnesota
257.9K papers, 11.9M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023240
2022643
20216,080
20205,811
20195,393
20185,067