scispace - formally typeset
Search or ask a question
Institution

Utrecht University

EducationUtrecht, Utrecht, Netherlands
About: Utrecht University is a education organization based out in Utrecht, Utrecht, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 58176 authors who have published 139351 publications receiving 6214282 citations. The organization is also known as: UU & Universiteit Utrecht.


Papers
More filters
Journal ArticleDOI
10 Jun 2010-Nature
TL;DR: In vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomeocytes derived from human embryonic stem cells or wild-type iPSC derived from a healthy brother of one of the LEopARD syndrome patients, which correlate with a potential hypertrophic state.
Abstract: The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.

695 citations

Journal ArticleDOI
TL;DR: This critical review will summarize the current state of knowledge of the underlying mechanisms for the activation and eventual deactivation of iron-based Fischer-Tropsch catalysts and suggest systematic approaches for relating chemical identity to performance in next generation iron- based catalyst systems.
Abstract: Iron-based Fischer–Tropsch catalysts, which are applied in the conversion of CO and H2 into longer hydrocarbon chains, are historically amongst the most intensively studied systems in heterogeneous catalysis. Despite this, fundamental understanding of the complex and dynamic chemistry of the iron–carbon–oxygen system and its implications for the rapid deactivation of the iron-based catalysts is still a developing field. Fischer–Tropsch catalysis is characterized by its multidisciplinary nature and therefore deals with a wide variety of fundamental chemical and physical problems. This critical review will summarize the current state of knowledge of the underlying mechanisms for the activation and eventual deactivation of iron-based Fischer–Tropsch catalysts and suggest systematic approaches for relating chemical identity to performance in next generation iron-based catalyst systems (210 references).

693 citations

Journal ArticleDOI
TL;DR: A family in which four women who were affected by either recurrent vulvovaginal candidiasis or onychomycosis had the early-stop-codon mutation Tyr238X in the beta-glucan receptor dectin-1, explaining why dectIn-1 deficiency was not associated with invasive fungal infections and highlighting the specific role of dect in human mucosal antifungal defense.
Abstract: Mucocutaneous fungal infections are typically found in patients who have no known immune defects. We describe a family in which four women who were affected by either recurrent vulvovaginal candidiasis or onychomycosis had the early-stop-codon mutation Tyr238X in the β-glucan receptor dectin-1. The mutated form of dectin-1 was poorly expressed, did not mediate β-glucan binding, and led to defective production of cytokines (interleukin-17, tumor necrosis factor, and interleukin-6) after stimulation with β-glucan or Candida albicans. In contrast, fungal phagocytosis and fungal killing were normal in the patients, explaining why dectin-1 deficiency was not associated with invasive fungal infections and highlighting the specific role of dectin-1 in human mucosal antifungal defense.

693 citations

Journal ArticleDOI
TL;DR: The AeroCom exercise as mentioned in this paper diagnoses multi-component aerosol modules in global modeling and compares simulated global distributions for mass and mid-visible aerosol optical thickness (aot) among 20 different modules.
Abstract: The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds).

692 citations

Journal ArticleDOI
TL;DR: Genetically engineered nisin variants are used to identify the structural requirements for the interaction of the peptide with lipid II, and the remaining in vivo activity is found to result from the unaltered capacity of the mutated peptide to bind to lipid II and thus to inhibit its incorporation into the peptidoglycan network.

692 citations


Authors

Showing all 58756 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Douglas G. Altman2531001680344
Hans Clevers199793169673
Craig B. Thompson195557173172
Patrick W. Serruys1862427173210
Ruedi Aebersold182879141881
Dennis S. Charney179802122408
Kenneth S. Kendler1771327142251
Jean Louis Vincent1611667163721
Vilmundur Gudnason159837123802
Monique M.B. Breteler15954693762
Lex M. Bouter158767103034
Elio Riboli1581136110499
Roy F. Baumeister157650132987
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

94% related

University of Washington
305.5K papers, 17.7M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of British Columbia
209.6K papers, 9.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023429
20221,014
20218,993
20208,578
20197,862
20187,020