scispace - formally typeset
Search or ask a question
Institution

Utrecht University

EducationUtrecht, Utrecht, Netherlands
About: Utrecht University is a education organization based out in Utrecht, Utrecht, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 58176 authors who have published 139351 publications receiving 6214282 citations. The organization is also known as: UU & Universiteit Utrecht.


Papers
More filters
Journal ArticleDOI
TL;DR: Substantial agreement was found among a large, interdisciplinary cohort of international experts regarding evidence supporting recommendations, and the remaining literature gaps in the assessment, prevention, and treatment of Pain, Agitation/sedation, Delirium, Immobility (mobilization/rehabilitation), and Sleep (disruption) in critically ill adults.
Abstract: Objective:To update and expand the 2013 Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the ICU.Design:Thirty-two international experts, four methodologists, and four critical illness survivors met virtually at least monthly. All section groups g

1,935 citations

Journal ArticleDOI
03 Dec 1998-Nature
TL;DR: The cloned gene encoding a guanine-nucleotide-exchange factor (GEF) for Rap1 is named Epac, which contains a cAMP-binding site and a domain that is homologous to domains of known GEFs for Ras and Rap1 that is regulated directly by cAMP.
Abstract: Rap1 is a small, Ras-like GTPase that was first identified as a protein that could suppress the oncogenic transformation of cells by Ras. Rap1 is activated by several extracellular stimuli and may be involved in cellular processes such as cell proliferation, cell differentiation, T-cell anergy and platelet activation. At least three different second messengers, namely diacylglycerol, calcium and cyclic AMP, are able to activate Rap1 by promoting its release of the guanine nucleotide GDP and its binding to GTP. Here we report that activation of Rap1 by forskolin and cAMP occurs independently of protein kinase A (also known as cAMP-activated protein kinase). We have cloned the gene encoding a guanine-nucleotide-exchange factor (GEF) which we have named Epac (exchange protein directly activated by cAMP). This protein contains a cAMP-binding site and a domain that is homologous to domains of known GEFs for Ras and Rap1. Epac binds cAMP in vitro and exhibits in vivo and in vitro GEF activity towards Rap1. cAMP strongly induces the GEF activity of Epac towards Rap1 both in vivo and in vitro. We conclude that Epac is a GEF for Rap1 that is regulated directly by cAMP and that Epac is a new target protein for cAMP.

1,933 citations

Journal ArticleDOI
Dalila Pinto1, Alistair T. Pagnamenta2, Lambertus Klei3, Richard Anney4  +178 moreInstitutions (46)
15 Jul 2010-Nature
TL;DR: The genome-wide characteristics of rare (<1% frequency) copy number variation in ASD are analysed using dense genotyping arrays to reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Abstract: The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

1,919 citations

Journal ArticleDOI
Paul Bastard1, Paul Bastard2, Paul Bastard3, Lindsey B. Rosen4, Qian Zhang1, Eleftherios Michailidis1, Hans-Heinrich Hoffmann1, Yu Zhang4, Karim Dorgham2, Quentin Philippot3, Quentin Philippot2, Jérémie Rosain3, Jérémie Rosain2, Vivien Béziat1, Vivien Béziat3, Vivien Béziat2, Jeremy Manry3, Jeremy Manry2, Elana Shaw4, Liis Haljasmägi5, Pärt Peterson5, Lazaro Lorenzo3, Lazaro Lorenzo2, Lucy Bizien3, Lucy Bizien2, Sophie Trouillet-Assant6, Kerry Dobbs4, Adriana Almeida de Jesus4, Alexandre Belot6, Anne Kallaste7, Emilie Catherinot, Yacine Tandjaoui-Lambiotte3, Jérémie Le Pen1, Gaspard Kerner2, Gaspard Kerner3, Benedetta Bigio1, Yoann Seeleuthner3, Yoann Seeleuthner2, Rui Yang1, Alexandre Bolze, András N Spaan1, András N Spaan8, Ottavia M. Delmonte4, Michael S. Abers4, Alessandro Aiuti9, Giorgio Casari9, Vito Lampasona9, Lorenzo Piemonti9, Fabio Ciceri9, Kaya Bilguvar10, Richard P. Lifton10, Richard P. Lifton1, Marc Vasse, David M. Smadja2, Mélanie Migaud3, Mélanie Migaud2, Jérôme Hadjadj2, Benjamin Terrier2, Darragh Duffy11, Lluis Quintana-Murci12, Lluis Quintana-Murci11, Diederik van de Beek13, Lucie Roussel14, Donald C. Vinh14, Stuart G. Tangye15, Stuart G. Tangye16, Filomeen Haerynck17, David Dalmau18, Javier Martinez-Picado19, Javier Martinez-Picado20, Petter Brodin21, Petter Brodin22, Michel C. Nussenzweig1, Michel C. Nussenzweig23, Stéphanie Boisson-Dupuis2, Stéphanie Boisson-Dupuis3, Stéphanie Boisson-Dupuis1, Carlos Rodríguez-Gallego, Guillaume Vogt2, Trine H. Mogensen24, Trine H. Mogensen25, Andrew J. Oler4, Jingwen Gu4, Peter D. Burbelo4, Jeffrey I. Cohen4, Andrea Biondi26, Laura Rachele Bettini26, Mariella D'Angiò26, Paolo Bonfanti26, Patrick Rossignol27, Julien Mayaux2, Frédéric Rieux-Laucat2, Eystein S. Husebye28, Eystein S. Husebye29, Eystein S. Husebye30, Francesca Fusco, Matilde Valeria Ursini, Luisa Imberti31, Alessandra Sottini31, Simone Paghera31, Eugenia Quiros-Roldan32, Camillo Rossi, Riccardo Castagnoli33, Daniela Montagna33, Amelia Licari33, Gian Luigi Marseglia33, Xavier Duval, Jade Ghosn2, Hgid Lab4, Covid Clinicians5, Covid-Storm Clinicians§4, CoV-Contact Cohort§2, Amsterdam Umc Covid Biobank1, Amsterdam Umc Covid Biobank3, Amsterdam Umc Covid Biobank2, Covid Human Genetic Effort1, John S. Tsang4, Raphaela Goldbach-Mansky4, Kai Kisand5, Michail S. Lionakis4, Anne Puel2, Anne Puel3, Anne Puel1, Shen-Ying Zhang3, Shen-Ying Zhang1, Shen-Ying Zhang2, Steven M. Holland4, Guy Gorochov2, Emmanuelle Jouanguy3, Emmanuelle Jouanguy1, Emmanuelle Jouanguy2, Charles M. Rice1, Aurélie Cobat2, Aurélie Cobat3, Aurélie Cobat1, Luigi D. Notarangelo4, Laurent Abel2, Laurent Abel1, Laurent Abel3, Helen C. Su4, Jean-Laurent Casanova 
23 Oct 2020-Science
TL;DR: A means by which individuals at highest risk of life-threatening COVID-19 can be identified is identified, and the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical CO VID-19 is tested.
Abstract: Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.

1,913 citations

Journal ArticleDOI
TL;DR: It is demonstrated that several job resources play a role in buffering the impact of several job demands on burnout, demonstrating that the interaction between (high) demands and (low) resources produces the highest levels of burnout.
Abstract: This study tested and refined the job demands–resources model, demonstrating that several job resources play a role in buffering the impact of several job demands on burnout. A total of 1,012 employees of a large institute for higher education participated in the study. Four demanding aspects of the job (e.g., work overload, emotional demands) and 4 job resources (e.g., autonomy, performance feedback) were used to test the central hypothesis that the interaction between (high) demands and (low) resources produces the highest levels of burnout (exhaustion, cynicism, reduced professional efficacy). The hypothesis was rejected for (reduced) professional efficacy but confirmed for exhaustion and cynicism regarding 18 out of 32 possible 2-way interactions (i.e., combinations of specific job demands and resources). During the past three decades, many studies have shown that unfavorable job characteristics may have a profound impact on job stress and burnout. For example, research has revealed that work overload, lack of autonomy, emotional demands, lowsocial support, and role ambiguity can all lead to feelings of exhaustion and negative, callous attitudes toward work (for reviews, see Lee & Ashforth, 1996; Schaufeli & Enzmann, 1998). Although these previous studies have produced a long list of possible antecedents of burnout, theoretical progress has been limited. The present study tries to increase our insight in the causes of burnout by extending the job demands–resources (JD-R) model (Bakker, Demerouti, De Boer, & Schaufeli, 2003; Demerouti, Bakker, Nachreiner, & Schaufeli, 2001). The central hypothesis tested is that burnout is the result of an imbalance between job demands and resources, and that several job resources may compensate for the influence of several job demands on burnout. Evidence for this contention would offer organizations a clear tool for competitive advantage, because proof for such moderating effects implies that employee well-being and productivity may be maintained, even when it is difficult to reduce or redesign job demands.

1,903 citations


Authors

Showing all 58756 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Douglas G. Altman2531001680344
Hans Clevers199793169673
Craig B. Thompson195557173172
Patrick W. Serruys1862427173210
Ruedi Aebersold182879141881
Dennis S. Charney179802122408
Kenneth S. Kendler1771327142251
Jean Louis Vincent1611667163721
Vilmundur Gudnason159837123802
Monique M.B. Breteler15954693762
Lex M. Bouter158767103034
Elio Riboli1581136110499
Roy F. Baumeister157650132987
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

94% related

University of Washington
305.5K papers, 17.7M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of British Columbia
209.6K papers, 9.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023429
20221,014
20218,993
20208,578
20197,862
20187,020