scispace - formally typeset
Search or ask a question
Institution

Utrecht University

EducationUtrecht, Utrecht, Netherlands
About: Utrecht University is a education organization based out in Utrecht, Utrecht, Netherlands. It is known for research contribution in the topics: Population & Poison control. The organization has 58176 authors who have published 139351 publications receiving 6214282 citations. The organization is also known as: UU & Universiteit Utrecht.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the deposition process, the parameters and demands of hydrogels in biofabrication, with special attention to robotic dispensing as an approach that generates constructs of clinically relevant dimensions.
Abstract: With advances in tissue engineering, the possibility of regenerating injured tissue or failing organs has become a realistic prospect for the first time in medical history. Tissue engineering - the combination of bioactive materials with cells to generate engineered constructs that functionally replace lost and/or damaged tissue - is a major strategy to achieve this goal. One facet of tissue engineering is biofabrication, where three-dimensional tissue-like structures composed of biomaterials and cells in a single manufacturing procedure are generated. Cell-laden hydrogels are commonly used in biofabrication and are termed "bioinks". Hydrogels are particularly attractive for biofabrication as they recapitulate several features of the natural extracellular matrix and allow cell encapsulation in a highly hydrated mechanically supportive three-dimensional environment. Additionally, they allow for efficient and homogeneous cell seeding, can provide biologically-relevant chemical and physical signals, and can be formed in various shapes and biomechanical characteristics. However, despite the progress made in modifying hydrogels for enhanced bioactivation, cell survival and tissue formation, little attention has so far been paid to optimize hydrogels for the physico-chemical demands of the biofabrication process. The resulting lack of hydrogel bioinks have been identified as one major hurdle for a more rapid progress of the field. In this review we summarize and focus on the deposition process, the parameters and demands of hydrogels in biofabrication, with special attention to robotic dispensing as an approach that generates constructs of clinically relevant dimensions. We aim to highlight this current lack of effectual hydrogels within biofabrication and initiate new ideas and developments in the design and tailoring of hydrogels. The successful development of a "printable" hydrogel that supports cell adhesion, migration, and differentiation will significantly advance this exciting and promising approach for tissue engineering.

1,468 citations

Journal ArticleDOI
TL;DR: NTA is a powerful characterization technique that complements DLS and is particularly valuable for analyzing polydisperse nanosized particles and protein aggregates.
Abstract: Purpose To evaluate the nanoparticle tracking analysis (NTA) technique, compare it with dynamic light scattering (DLS) and test its performance in characterizing drug delivery nanoparticles and protein aggregates.

1,467 citations

Journal ArticleDOI
Corinne Le Quéré1, Robbie M. Andrew, Pierre Friedlingstein2, Stephen Sitch2, Judith Hauck3, Julia Pongratz4, Julia Pongratz5, Penelope A. Pickers1, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell6, Almut Arneth7, Vivek K. Arora, Leticia Barbero8, Leticia Barbero9, Ana Bastos4, Laurent Bopp10, Frédéric Chevallier11, Louise Chini12, Philippe Ciais11, Scott C. Doney13, Thanos Gkritzalis14, Daniel S. Goll11, Ian Harris1, Vanessa Haverd6, Forrest M. Hoffman15, Mario Hoppema3, Richard A. Houghton16, George C. Hurtt12, Tatiana Ilyina5, Atul K. Jain17, Truls Johannessen18, Chris D. Jones19, Etsushi Kato, Ralph F. Keeling20, Kees Klein Goldewijk21, Kees Klein Goldewijk22, Peter Landschützer5, Nathalie Lefèvre23, Sebastian Lienert24, Zhu Liu25, Zhu Liu1, Danica Lombardozzi26, Nicolas Metzl23, David R. Munro27, Julia E. M. S. Nabel5, Shin-Ichiro Nakaoka28, Craig Neill29, Craig Neill30, Are Olsen18, T. Ono, Prabir K. Patra31, Anna Peregon11, Wouter Peters32, Wouter Peters33, Philippe Peylin11, Benjamin Pfeil18, Benjamin Pfeil34, Denis Pierrot9, Denis Pierrot8, Benjamin Poulter35, Gregor Rehder36, Laure Resplandy37, Eddy Robertson19, Matthias Rocher11, Christian Rödenbeck5, Ute Schuster2, Jörg Schwinger34, Roland Séférian11, Ingunn Skjelvan34, Tobias Steinhoff38, Adrienne J. Sutton39, Pieter P. Tans39, Hanqin Tian40, Bronte Tilbrook30, Bronte Tilbrook29, Francesco N. Tubiello41, Ingrid T. van der Laan-Luijkx32, Guido R. van der Werf42, Nicolas Viovy11, Anthony P. Walker15, Andy Wiltshire19, Rebecca Wright1, Sönke Zaehle5, Bo Zheng11 
University of East Anglia1, University of Exeter2, Alfred Wegener Institute for Polar and Marine Research3, Ludwig Maximilian University of Munich4, Max Planck Society5, Commonwealth Scientific and Industrial Research Organisation6, Karlsruhe Institute of Technology7, Atlantic Oceanographic and Meteorological Laboratory8, Cooperative Institute for Marine and Atmospheric Studies9, École Normale Supérieure10, Centre national de la recherche scientifique11, University of Maryland, College Park12, University of Virginia13, Flanders Marine Institute14, Oak Ridge National Laboratory15, Woods Hole Research Center16, University of Illinois at Urbana–Champaign17, Geophysical Institute, University of Bergen18, Met Office19, University of California, San Diego20, Utrecht University21, Netherlands Environmental Assessment Agency22, University of Paris23, Oeschger Centre for Climate Change Research24, Tsinghua University25, National Center for Atmospheric Research26, Institute of Arctic and Alpine Research27, National Institute for Environmental Studies28, Hobart Corporation29, Cooperative Research Centre30, Japan Agency for Marine-Earth Science and Technology31, Wageningen University and Research Centre32, University of Groningen33, Bjerknes Centre for Climate Research34, Goddard Space Flight Center35, Leibniz Institute for Baltic Sea Research36, Princeton University37, Leibniz Institute of Marine Sciences38, National Oceanic and Atmospheric Administration39, Auburn University40, Food and Agriculture Organization41, VU University Amsterdam42
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: . Accurate assessment of anthropogenic carbon dioxide ( CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( EFF ) are based on energy statistics and cement production data, while emissions from land use and land-use change ( ELUC ), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate ( GATM ) is computed from the annual changes in concentration. The ocean CO2 sink ( SOCEAN ) and terrestrial CO2 sink ( SLAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( BIM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr −1 , ELUC 1.5±0.7 GtC yr −1 , GATM 4.7±0.02 GtC yr −1 , SOCEAN 2.4±0.5 GtC yr −1 , and SLAND 3.2±0.8 GtC yr −1 , with a budget imbalance BIM of 0.5 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr −1 . Also for 2017, ELUC was 1.4±0.7 GtC yr −1 , GATM was 4.6±0.2 GtC yr −1 , SOCEAN was 2.5±0.5 GtC yr −1 , and SLAND was 3.8±0.8 GtC yr −1 , with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of + 2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr −1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018 .

1,458 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss an umbrella model of levels of change that could serve as a framework for reflection and development in teacher education, highlighting relatively new areas of research, viz. teachers' professional identity and mission.

1,458 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a step-by-step guide to analysing measurement invariance of latent constructs, which is important in research across groups, or across time.
Abstract: The analysis of measurement invariance of latent constructs is important in research across groups, or across time. By establishing whether factor loadings, intercepts and residual variances are equivalent in a factor model that measures a latent concept, we can assure that comparisons that are made on the latent variable are valid across groups or time. Establishing measurement invariance involves running a set of increasingly constrained structural equation models, and testing whether differences between these models are significant. This paper provides a step-by-step guide to analysing measurement invariance.

1,457 citations


Authors

Showing all 58756 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Douglas G. Altman2531001680344
Hans Clevers199793169673
Craig B. Thompson195557173172
Patrick W. Serruys1862427173210
Ruedi Aebersold182879141881
Dennis S. Charney179802122408
Kenneth S. Kendler1771327142251
Jean Louis Vincent1611667163721
Vilmundur Gudnason159837123802
Monique M.B. Breteler15954693762
Lex M. Bouter158767103034
Elio Riboli1581136110499
Roy F. Baumeister157650132987
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

94% related

University of Washington
305.5K papers, 17.7M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of British Columbia
209.6K papers, 9.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023429
20221,014
20218,992
20208,578
20197,862
20187,020