scispace - formally typeset
Search or ask a question
Institution

Utsunomiya University

EducationUtsunomiya, Japan
About: Utsunomiya University is a education organization based out in Utsunomiya, Japan. It is known for research contribution in the topics: Laser & Holography. The organization has 4139 authors who have published 6812 publications receiving 91975 citations. The organization is also known as: Utsunomiya daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: The present paper used existing knowledge on the structure of strigolactones and combined it with recently obtained insight in the biosynthetic origin of these signalling compounds to postulate structures for Striga and Orobanche species that have been isolated but for which so far the structure has not been elucidated, but also to propose structures of striglactones that may be discovered in the future.

92 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the atomic physics of the highly-charged ions relevant to EUV emission at these wavelengths is presented, which considers the developments that have contributed to the realization of the 5% conversion efficiency at 13.5 nm which underpins the production of high-volume lithography tools, and those that will be required to realize BEUV lithography.
Abstract: The primary requirement for the development of tools for extreme ultraviolet lithography (EUVL) has been the identification and optimization of suitable sources. These sources must be capable of producing hundreds of watts of extreme ultraviolet (EUV) radiation within a wavelength bandwidth of 2% centred on 13.5 nm, based on the availability of Mo/Si multilayer mirrors (MLMs) with a reflectivity of ~70% at this wavelength. Since, with the exception of large scale facilities, such as free electron lasers, such radiation is only emitted from plasmas containing moderately to highly charged ions, the source development prompted a large volume of studies of laser produced and discharge plasmas in order to identify which ions were the strongest emitters at this wavelength and the plasma conditions under which their emission was optimized. It quickly emerged that transitions of the type 4p64dn − 4p54dn+1 + 4dn−14f in the spectra of Sn IX to SnXIV were the best candidates and work is still ongoing to establish the plasma conditions under which their emission at 13.5 nm is maximized. In addition, development of other sources at 6.X nm, where X ~ 0.7, has been identified as the wavelength of choice for so-called Beyond EUVL (BEUVL), based on the availability of La/B based MLMs, with theoretical reflectance approaching 80% at this wavelength. Laser produced plasmas of Gd and Tb have been identified as potential source elements, as n = 4 − n = 4 transitions in their ions emit strongly near this wavelength. However to date, the highest conversion efficiency (CE) obtained, for laser to BEUV energy emitted within the 0.6% wavelength bandwidth of the available mirrors is only 0.8%, compared with values of 5% for the 2% bandwidth relevant for the Mo/Si mirrors at 13.5 nm. This suggests a need to identify other potential sources or the selection of other wavelengths for BEUVL. This review deals with the atomic physics of the highly-charged ions relevant to EUV emission at these wavelengths. It considers the developments that have contributed to the realization of the 5% CE at 13.5 nm which underpins the production of high-volume lithography tools, and those that will be required to realize BEUV lithography.

92 citations

Journal ArticleDOI
TL;DR: HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL, and expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation, indicating that AAC might be effective in quenching quorum sensing of fish pathogens.
Abstract: N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the formation mechanism and the mesostructural evolution are investigated by various state-of-the-art techniques, particularly by a specially constructed 2D small-angle X-ray scattering setup.
Abstract: Crack-free, mesoporous SnO 2 films with highly crystalline pore walls are obtained by evaporation-induced self-assembly using a novel amphiphilic block-copolymer template ("KLE" type, poly(ethylene-co-butylene)-block-poly(ethylene oxide)), which leads to well-defined arrays of contracted spherical mesopores by suitable heat-treatment procedures. Because of the improved templating properties of these polymers, a facile heat-treatment procedure can be applied whilst keeping the mesoscopic order intact up to 600-650 °C. The formation mechanism and the mesostructural evolution are investigated by various state-of-the-art techniques, particularly by a specially constructed 2D small-angle X-ray scattering setup. It is found that the main benefit from the polymers is the formation of an ordered mesostructure under the drastic conditions of using molecular Sn precursors (SnCl 4 ), taking advantage of the large segregation strength of these amphiphiles. Furthermore, it is found that the crystallization mechanism is different from other mesostructured metal oxides such as TiO 2 . In the case of SnO 2 , a significant degree of crystallization (induced by heat treatment) already starts at quite low temperatures, 250-300 °C. Therefore, this study provides a better understanding of the general parameters governing the preparation of mesoporous metal oxides films with crystalline pore walls.

91 citations

Journal ArticleDOI
15 Mar 2011
TL;DR: A novel, fast and facile microwave technique has been developed for preparing monodispersed silica coated silver nanoparticles and straightforward surface functionalization of the prepared Ag@SiO(2) nanoparticles with desired functional groups was performed to make the particles useful for many applications.
Abstract: A novel, fast and facile microwave technique has been developed for preparing monodispersed silica coated silver (Ag@SiO(2)) nanoparticles. Without using any other surface coupling agents such as 3-aminopropyltrimethoxysilane (APS) or polymer such as polyvinyl pyrrolidone (PVP), Ag@SiO(2) nanoparticles could be easily prepared by microwave irradiation of a mixture of colloidal silver nanoparticles, tetraethoxysilane (TEOS) and catalyst for only 2 min. The thickness of silica shell could be conveniently controlled in the range of few nanometers (nm) to 80 nm by changing the concentration of TEOS. Transmission electron microscopy (TEM) and UV-visible spectroscopy were employed to characterize the morphology and optical properties of the prepared Ag@SiO(2) nanoparticles, respectively. The prepared Ag@SiO(2) nanoparticles exhibited a change in surface plasmon absorption depending on the silica thickness. Compared to the conventional techniques based on Stober method, which need 4-24 h for silica coating of Ag nanoparticles, this new technique is capable of synthesizing monodispersed, uniform and single core containing Ag@SiO(2) nanoparticles within very short reaction time. In addition, straightforward surface functionalization of the prepared Ag@SiO(2) nanoparticles with desired functional groups was performed to make the particles useful for many applications. The components of surface functionalized nanoparticles were examined by Fourier transform infrared (FT-IR) spectroscopy, zeta potential measurements and X-ray photoelectron spectroscopy (XPS).

91 citations


Authors

Showing all 4148 results

NameH-indexPapersCitations
Kazuhito Hashimoto12078161195
Yoshinori Yamamoto8595028130
S. Uehara7860223493
Minghua Liu7467920727
Akira Fujishima7029969335
Satoshi Hasegawa6970822153
Donald A. Tryk6724025469
Hiromu Suzuki6525015241
Kunio Arai6429315022
Kazuo Suzuki6350717786
Jin Wang6019610435
James B. Reid6024611773
Richard L. Smith5930211420
Isao Kubo5830311291
Takao Yokota5724511813
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

92% related

University of Tsukuba
79.4K papers, 1.9M citations

92% related

Nagoya University
128.2K papers, 3.2M citations

91% related

Kyoto University
217.2K papers, 6.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202231
2021247
2020315
2019315
2018289