scispace - formally typeset
Search or ask a question
Institution

Vanderbilt University

EducationNashville, Tennessee, United States
About: Vanderbilt University is a education organization based out in Nashville, Tennessee, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 45066 authors who have published 106528 publications receiving 5435039 citations. The organization is also known as: Vandy.


Papers
More filters
Journal ArticleDOI
12 Sep 2002-Neuron
TL;DR: It is reported that the occipital and fusiform face areas (OFA and FFA) also contain neural signals capable of differentiating biological from nonbiological motion.

666 citations

Journal ArticleDOI
TL;DR: This paper reports a new approach to the template-directed synthesis of inorganic±organic nanotubes using tobacco mosaic virus (TMV), and shows that TMV is a suitable template for reactions such as co-crystallization, oxidative hydrolysis, and sol-gel condensation.
Abstract: The use of biological molecules, assemblies and systems in the development of inorganic materials synthesis continues to offer new and exciting alternatives to conventional synthetic strategies. Biological templates, such as protein cages, viroid capsules, bacterial rhapidosomes, S-layers, multicellular superstructures, biolipid cylinders, and DNA, have been utilized to direct the deposition, assembly, and patterning of inorganic nanoparticles and microstructures. In this paper, we report a new approach to the template-directed synthesis of inorganic±organic nanotubes using tobacco mosaic virus (TMV). TMV is a remarkably stable virion, remaining intact at temperatures up to 60 C and at pH values between 2 and 10. Each viral particle consists of 2130 identical protein subunits arranged in a helical motif around a single strand of RNA to produce a hollow protein tube, 300 18 nm in size, with a 4 nm-wide central channel. The internal and external surfaces of the protein consist of repeated patterns of charged amino acid residues, such as glutamate, aspartate, arginine, and lysine. In principle, these functionalities should offer a wide variety of nucleation sites for surface-controlled inorganic deposition, which, in association with the high thermal and pH stability, could be exploited in the synthesis of unusual materials such as high-aspect-ratio composites and protein-confined inorganic nanowires. Here we show that TMV is a suitable template for reactions such as co-crystallization (CdS and PbS), oxidative hydrolysis (iron oxides), and sol-gel condensation (SiO2) (Fig. 1).

666 citations

Journal ArticleDOI
Ron W. Pelton1, B Saxena1, M Jones1, Harold L. Moses1, L I Gold1 
TL;DR: TGF beta proteins were observed to localize to different cells than the mRNA in a given embryonic tissue, indicating that a complex pattern of transcription, translation, and secretion for TGF beta s 1-3 exists in the mouse embryo.
Abstract: Isoform-specific antibodies to TGF beta 1, TGF beta 2, and TGF beta 3 proteins were generated and have been used to examine the expression of these factors in the developing mouse embryo from 12.5-18.5 d post coitum (d.p.c.). These studies demonstrate the initial characterization of both TGF beta 2 and beta 3 in mammalian embryogenesis and are compared with TGF beta 1. Expression of one or all three TGF beta proteins was observed in many tissues, e.g., cartilage, bone, teeth, muscle, heart, blood vessels, lung, kidney, gut, liver, eye, ear, skin, and nervous tissue. Furthermore, all three TGF beta proteins demonstrated discrete cell-specific patterns of expression at various stages of development and the wide variety of tissues expressing TGF beta proteins represent all three primary embryonic germ layers. For example, specific localization of TGF beta 1 was observed in the lens fibers of the eye (ectoderm), TGF beta 2 in the cortex of the adrenal gland (mesoderm), and TGF beta 3 in the cochlear epithelium of the inner ear (endoderm). Compared to the expression of TGF beta mRNA transcripts in a given embryonic tissue, TGF beta proteins were frequently colocalized within the same cell type as the mRNA, but in some cases were observed to localize to different cells than the mRNA, thereby indicating that a complex pattern of transcription, translation, and secretion for TGF beta s 1-3 exists in the mouse embryo. This also indicates that TGF beta 1, beta 2, and beta 3 act through both paracrine and autocrine mechanisms during mammalian embryogenesis.

666 citations

Journal ArticleDOI
TL;DR: Carbon nanotube-coated electrodes are expected to improve current electrophysiological techniques and to facilitate the development of long-lasting brain-machine interface devices.
Abstract: Implanting electrical devices in the nervous system to treat neural diseases is becoming very common. The success of these brain-machine interfaces depends on the electrodes that come into contact with the neural tissue. Here we show that conventional tungsten and stainless steel wire electrodes can be coated with carbon nanotubes using electrochemical techniques under ambient conditions. The carbon nanotube coating enhanced both recording and electrical stimulation of neurons in culture, rats and monkeys by decreasing the electrode impedance and increasing charge transfer. Carbon nanotube-coated electrodes are expected to improve current electrophysiological techniques and to facilitate the development of long-lasting brain-machine interface devices.

665 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the key challenges facing membrane distillation and explore the opportunities for improving membrane membranes and system design, highlighting the outlook for MD desalination, highlighting challenges and key areas for future research and development.
Abstract: Energy-efficient desalination and water treatment technologies play a critical role in augmenting freshwater resources without placing an excessive strain on limited energy supplies. By desalinating high-salinity waters using low-grade or waste heat, membrane distillation (MD) has the potential to increase sustainable water production, a key facet of the water-energy nexus. However, despite advances in membrane technology and the development of novel process configurations, the viability of MD as an energy-efficient desalination process remains uncertain. In this review, we examine the key challenges facing MD and explore the opportunities for improving MD membranes and system design. We begin by exploring how the energy efficiency of MD is limited by the thermal separation of water and dissolved solutes. We then assess the performance of MD relative to other desalination processes, including reverse osmosis and multi-effect distillation, comparing various metrics including energy efficiency, energy quality, and susceptibility to fouling. By analyzing the impact of membrane properties on the energy efficiency of an MD desalination system, we demonstrate the importance of maximizing porosity and optimizing thickness to minimize energy consumption. We also show how ineffective heat recovery and temperature polarization can limit the energetic performance of MD and how novel process variants seek to reduce these inefficiencies. Fouling, scaling, and wetting can have a significant detrimental impact on MD performance. We outline how novel membrane designs with special surface wettability and process-based fouling control strategies may bolster membrane and process robustness. Finally, we explore applications where MD may be able to outperform established desalination technologies, increasing water production without consuming large amounts of electrical or high-grade thermal energy. We conclude by discussing the outlook for MD desalination, highlighting challenges and key areas for future research and development.

665 citations


Authors

Showing all 45403 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Meir J. Stampfer2771414283776
John Q. Trojanowski2261467213948
Robert M. Califf1961561167961
Matthew Meyerson194553243726
Scott M. Grundy187841231821
Tony Hunter175593124726
David R. Jacobs1651262113892
Donald E. Ingber164610100682
L. Joseph Melton16153197861
Ralph A. DeFronzo160759132993
David W. Bates1591239116698
Charles N. Serhan15872884810
David Cella1561258106402
Jay Hauser1552145132683
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

98% related

Columbia University
224K papers, 12.8M citations

97% related

Yale University
220.6K papers, 12.8M citations

97% related

Harvard University
530.3K papers, 38.1M citations

97% related

Johns Hopkins University
249.2K papers, 14M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022541
20215,134
20205,232
20194,883
20184,649