scispace - formally typeset
Search or ask a question
Institution

Vanderbilt University

EducationNashville, Tennessee, United States
About: Vanderbilt University is a education organization based out in Nashville, Tennessee, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 45066 authors who have published 106528 publications receiving 5435039 citations. The organization is also known as: Vandy.


Papers
More filters
Journal ArticleDOI
TL;DR: Ibrutinib, as compared with ofatumumab, significantly improved progression-free survival, overall survival, and response rate among patients with previously treated CLL or SLL.
Abstract: Background In patients with chronic lymphoid leukemia (CLL) or small lymphocytic lymphoma (SLL), a short duration of response to therapy or adverse cytogenetic abnormalities are associated with a poor outcome. We evaluated the efficacy of ibrutinib, a covalent inhibitor of Bruton’s tyrosine kinase, in patients at risk for a poor outcome. Methods In this multicenter, open-label, phase 3 study, we randomly assigned 391 patients with relapsed or refractory CLL or SLL to receive daily ibrutinib or the anti-CD20 antibody ofatumumab. The primary end point was the duration of progression-free survival, with the duration of overall survival and the overall response rate as secondary end points. Results At a median follow-up of 9.4 months, ibrutinib significantly improved progressionfree survival; the median duration was not reached in the ibrutinib group (with a rate of progression-free survival of 88% at 6 months), as compared with a median of 8.1 months in the ofatumumab group (hazard ratio for progression or death in the ibrutinib group, 0.22; P<0.001). Ibrutinib also significantly improved overall survival (hazard ratio for death, 0.43; P = 0.005). At 12 months, the overall survival rate was 90% in the ibrutinib group and 81% in the ofatumumab group. The overall response rate was significantly higher in the ibrutinib group than in the ofatumumab group (42.6% vs. 4.1%, P<0.001). An additional 20% of ibrutinib-treated patients had a partial response with lymphocytosis. Similar effects were observed regardless of whether patients had a chromosome 17p13.1 deletion or resistance to purine analogues. The most frequent nonhematologic adverse events were diarrhea, fatigue, pyrexia, and nausea in the ibrutinib group and fatigue, infusion-related reactions, and cough in the ofatumumab group. Conclusions Ibrutinib, as compared with ofatumumab, significantly improved progression-free survival, overall survival, and response rate among patients with previously treated CLL or SLL. (Funded by Pharmacyclics and Janssen; RESONATE ClinicalTrials.gov number, NCT01578707.)

1,343 citations

Journal ArticleDOI
Brian J. Haas1, Sophien Kamoun2, Sophien Kamoun3, Michael C. Zody4, Michael C. Zody1, Rays H. Y. Jiang5, Rays H. Y. Jiang1, Robert E. Handsaker1, Liliana M. Cano3, Manfred Grabherr1, Chinnappa D. Kodira1, Chinnappa D. Kodira6, Sylvain Raffaele3, Trudy Torto-Alalibo2, Trudy Torto-Alalibo6, Tolga O. Bozkurt3, Audrey M. V. Ah-Fong7, Lucia Alvarado1, Vicky L. Anderson8, Miles R. Armstrong9, Anna O. Avrova9, Laura Baxter10, Jim Beynon10, Petra C. Boevink9, Stephanie R. Bollmann11, Jorunn I. B. Bos2, Vincent Bulone12, Guohong Cai13, Cahid Cakir2, James C. Carrington14, Megan Chawner15, Lucio Conti16, Stefano Costanzo11, Richard Ewan16, Noah Fahlgren14, Michael A. Fischbach17, Johanna Fugelstad12, Eleanor M. Gilroy9, Sante Gnerre1, Pamela J. Green18, Laura J. Grenville-Briggs8, John Griffith15, Niklaus J. Grünwald11, Karolyn Horn15, Neil R. Horner8, Chia-Hui Hu19, Edgar Huitema2, Dong-Hoon Jeong18, Alexandra M. E. Jones3, Jonathan D. G. Jones3, Richard W. Jones11, Elinor K. Karlsson1, Sridhara G. Kunjeti20, Kurt Lamour21, Zhenyu Liu2, Li-Jun Ma1, Dan MacLean3, Marcus C. Chibucos22, Hayes McDonald23, Jessica McWalters15, Harold J. G. Meijer5, William Morgan24, Paul Morris25, Carol A. Munro8, Keith O'Neill6, Keith O'Neill1, Manuel D. Ospina-Giraldo15, Andrés Pinzón, Leighton Pritchard9, Bernard H Ramsahoye26, Qinghu Ren27, Silvia Restrepo, Sourav Roy7, Ari Sadanandom16, Alon Savidor28, Sebastian Schornack3, David C. Schwartz29, Ulrike Schumann8, Ben Schwessinger3, Lauren Seyer15, Ted Sharpe1, Cristina Silvar3, Jing Song2, David J. Studholme3, Sean M. Sykes1, Marco Thines3, Marco Thines30, Peter J. I. van de Vondervoort5, Vipaporn Phuntumart25, Stephan Wawra8, R. Weide5, Joe Win3, Carolyn A. Young2, Shiguo Zhou29, William E. Fry13, Blake C. Meyers18, Pieter van West8, Jean B. Ristaino19, Francine Govers5, Paul R. J. Birch31, Stephen C. Whisson9, Howard S. Judelson7, Chad Nusbaum1 
17 Sep 2009-Nature
TL;DR: The sequence of the P. infestans genome is reported, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates and probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Abstract: Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.

1,341 citations

Journal ArticleDOI
Peter Szatmari1, Andrew D. Paterson2, Lonnie Zwaigenbaum1, Wendy Roberts2, Jessica Brian2, Xiao-Qing Liu2, John B. Vincent2, Jennifer Skaug2, Ann P. Thompson1, Lili Senman2, Lars Feuk2, Cheng Qian2, Susan E. Bryson3, Marshall B. Jones4, Christian R. Marshall2, Stephen W. Scherer2, Veronica J. Vieland5, Christopher W. Bartlett5, La Vonne Mangin5, Rhinda Goedken6, Alberto M. Segre6, Margaret A. Pericak-Vance7, Michael L. Cuccaro7, John R. Gilbert7, Harry H. Wright8, Ruth K. Abramson8, Catalina Betancur9, Thomas Bourgeron10, Christopher Gillberg11, Marion Leboyer9, Joseph D. Buxbaum12, Kenneth L. Davis12, Eric Hollander12, Jeremy M. Silverman12, Joachim Hallmayer13, Linda Lotspeich13, James S. Sutcliffe14, Jonathan L. Haines14, Susan E. Folstein15, Joseph Piven16, Thomas H. Wassink6, Val C. Sheffield6, Daniel H. Geschwind17, Maja Bucan18, W. Ted Brown, Rita M. Cantor17, John N. Constantino19, T. Conrad Gilliam20, Martha R. Herbert21, Clara Lajonchere17, David H. Ledbetter22, Christa Lese-Martin22, Janet Miller17, Stan F. Nelson17, Carol A. Samango-Sprouse23, Sarah J. Spence17, Matthew W. State24, Rudolph E. Tanzi21, Hilary Coon25, Geraldine Dawson26, Bernie Devlin27, Annette Estes26, Pamela Flodman28, Lambertus Klei27, William M. McMahon25, Nancy J. Minshew27, Jeff Munson26, Elena Korvatska29, Elena Korvatska26, Patricia M. Rodier30, Gerard D. Schellenberg29, Gerard D. Schellenberg26, Moyra Smith28, M. Anne Spence28, Christopher J. Stodgell30, Ping Guo Tepper, Ellen M. Wijsman26, Chang En Yu29, Chang En Yu26, Bernadette Rogé31, Carine Mantoulan31, Kerstin Wittemeyer31, Annemarie Poustka32, Bärbel Felder32, Sabine M. Klauck32, Claudia Schuster32, Fritz Poustka33, Sven Bölte33, Sabine Feineis-Matthews33, Evelyn Herbrecht33, Gabi Schmötzer33, John Tsiantis34, Katerina Papanikolaou34, Elena Maestrini35, Elena Bacchelli35, Francesca Blasi35, Simona Carone35, Claudio Toma35, Herman van Engeland36, Maretha de Jonge36, Chantal Kemner36, Frederike Koop36, Marjolijn Langemeijer36, Channa Hijimans36, Wouter G. Staal36, Gillian Baird37, Patrick Bolton38, Michael Rutter38, Emma Weisblatt39, Jonathan Green40, Catherine Aldred40, Julie Anne Wilkinson40, Andrew Pickles40, Ann Le Couteur41, Tom Berney41, Helen McConachie41, Anthony J. Bailey42, Kostas Francis42, Gemma Honeyman42, Aislinn Hutchinson42, Jeremy R. Parr42, Simon Wallace42, Anthony P. Monaco42, Gabrielle Barnby42, Kazuhiro Kobayashi42, Janine A. Lamb42, Inês Sousa42, Nuala Sykes42, Edwin H. Cook43, Stephen J. Guter43, Bennett L. Leventhal43, Jeff Salt43, Catherine Lord44, Christina Corsello44, Vanessa Hus44, Daniel E. Weeks27, Fred R. Volkmar24, Maïté Tauber45, Eric Fombonne46, Andy Shih47 
TL;DR: Linkage and copy number variation analyses implicate chromosome 11p12–p13 and neurexins, respectively, among other candidate loci, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
Abstract: Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.

1,338 citations

Book
05 Sep 1996
TL;DR: A classic reference and text, this book introduces the foundations used to create an accurate computer screen image using mathematical tools.
Abstract: A classic reference and text, this book introduces the foundations used to create an accurate computer screen image using mathematical tools. This comprehensive guide is a handbook for students and practitioners and includes an extensive bibliography for further study.

1,338 citations

Journal ArticleDOI
TL;DR: It is suggested that level of categorization and expertise, rather than superficial properties of objects, determine the specialization of the FFA.
Abstract: Expertise with unfamiliar objects (‘greebles’) recruits face-selective areas in the fusiform gyrus (FFA) and occipital lobe (OFA). Here we extend this finding to other homogeneous categories. Bird and car experts were tested with functional magnetic resonance imaging during tasks with faces, familiar objects, cars and birds. Homogeneous categories activated the FFA more than familiar objects. Moreover, the right FFA and OFA showed significant expertise effects. An independent behavioral test of expertise predicted relative activation in the right FFA for birds versus cars within each group. The results suggest that level of categorization and expertise, rather than superficial properties of objects, determine the specialization of the FFA.

1,338 citations


Authors

Showing all 45403 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Meir J. Stampfer2771414283776
John Q. Trojanowski2261467213948
Robert M. Califf1961561167961
Matthew Meyerson194553243726
Scott M. Grundy187841231821
Tony Hunter175593124726
David R. Jacobs1651262113892
Donald E. Ingber164610100682
L. Joseph Melton16153197861
Ralph A. DeFronzo160759132993
David W. Bates1591239116698
Charles N. Serhan15872884810
David Cella1561258106402
Jay Hauser1552145132683
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

98% related

Columbia University
224K papers, 12.8M citations

97% related

Yale University
220.6K papers, 12.8M citations

97% related

Harvard University
530.3K papers, 38.1M citations

97% related

Johns Hopkins University
249.2K papers, 14M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022541
20215,134
20205,232
20194,883
20184,649