scispace - formally typeset
Search or ask a question
Institution

Vaughn College of Aeronautics and Technology

EducationNew York, New York, United States
About: Vaughn College of Aeronautics and Technology is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Gravitational microlensing & Planetary system. The organization has 727 authors who have published 708 publications receiving 14082 citations. The organization is also known as: College of Aeronautics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new scheme is proposed and demonstrated by using a polarization-maintaining bidirectional coupled optoelectronic oscillator (COEO) incorporating a Sagnac loop structure.

4 citations

Journal ArticleDOI
TL;DR: A wide range of computational methods including central scheme, MUSCL scheme, linear upwind scheme and Weighted Essentially Non Oscillatory (WENO) scheme have been applied in the current hybrid schemes framework.
Abstract: An idea of designing oscillation-less and high-resolution hybrid schemes is proposed and several types of hybrid schemes based on this idea are presented on block-structured grids. The general framework, for designing various types of hybrid schemes, is established using a Multi-dimensional Optimal Order Detection (MOOD) method proposed by Clain, Diot and Loubere [1]. The methodology utilizes low dissipation or dispersion but less robust schemes to update the solution and then implements robust and high resolution schemes to deal with problematic situations. A wide range of computational methods including central scheme, MUSCL scheme, linear upwind scheme and Weighted Essentially Non Oscillatory (WENO) scheme have been applied in the current hybrid schemes framework. Detailed numerical studies on classical test cases for the Euler system are performed, addressing the issues of the resolution and non-oscillatory property around the discontinuities.

4 citations

Journal ArticleDOI
TL;DR: In this article, a method for dealing with this problem by the erosion of elements is proposed, where the main driver is the definition of element failure strains, and the results were then used to simulate high velocity impacts upon a multi-layered aluminium target in order to predict a ballistic limit curve.
Abstract: Lagrangian finite element methods have been used extensively in the past to study the non-linear transient behaviour of materials, ranging from crash tests of cars to simulating bird strikes on planes. However, as this type of space discretisation does not allow for motion of the material through the mesh when modelling extremely large deformations, the mesh becomes highly distorted. This paper describes some limitations and applicability of this type of analysis for high velocity impacts. A method for dealing with this problem by the erosion of elements is proposed, where the main driver is the definition of element failure strains. Results were compared with empirical perforation results and were found to be in good agreement. The results were then used to simulate high velocity impacts upon a multi-layered aluminium target in order to predict a ballistic limit curve. LS-DYNA3D was used as the FE solver for all simulations. Meshes were generated using Truegrid.

4 citations

Journal ArticleDOI
TL;DR: The object is to inform the designer, of whatever persuasion, of the critically important aspects of command and stability augmentation system design for the advanced technology aeroplane.
Abstract: There exists an enormous wealth of published material describing the application of so called, 'modern control methods' to the design of fliglat control systems for piloted aeroplanes. It is also evident, with the exception of a very small number of recent applications, that there is a conspicuous lack of enthusiasm on the part of the airframe manufacturers to adopt this design technology, especially for the design of command and stability augmentation systems for piloted aeroplanes. It is possible to speculate on the reasons for this apparent lack of interest, but to do so might well result in a misplaced condemnation of modern control methods. Since evidence exists to suggest that some modern control system design strategies have overlooked important flight dynamics considerations, the discussion is turned around here by drawing attention to some of the more important considerations in command and stability augmentation system design. The object is, therefore, to inform the designer, of whatever persuas...

4 citations


Authors

Showing all 732 results

NameH-indexPapersCitations
Xiang Zhang1541733117576
Denis J. Sullivan6133214092
To. Saito511839392
Arthur H. Lefebvre411234896
Michele Meo402235557
Robin S. Langley402635601
Ning Qin372835011
Holger Babinsky332424068
B. S. Gaudi31642560
Philip J. Longhurst29802578
Michael Gaster27663998
Don Harris261292537
To. Saito25562362
John F. O'Connell22891763
Rade Vignjevic21841563
Network Information
Related Institutions (5)
Langley Research Center
37.6K papers, 821.6K citations

76% related

Technion – Israel Institute of Technology
79.3K papers, 2.6M citations

76% related

Northwestern Polytechnical University
56K papers, 657K citations

76% related

Beihang University
73.5K papers, 975.6K citations

75% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

74% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
20223
202145
202033
201934
201841