scispace - formally typeset
Search or ask a question

Showing papers by "Veterans Health Administration published in 2019"


Journal ArticleDOI
TL;DR: In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years.
Abstract: Background Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium...

3,233 citations


Journal ArticleDOI
TL;DR: The multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress are described.
Abstract: Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.

1,708 citations


Journal ArticleDOI
TL;DR: It is demonstrated that an end-to-end deep learning approach can classify a broad range of distinct arrhythmias from single-lead ECGs with high diagnostic performance similar to that of cardiologists.
Abstract: Computerized electrocardiogram (ECG) interpretation plays a critical role in the clinical ECG workflow1. Widely available digital ECG data and the algorithmic paradigm of deep learning2 present an opportunity to substantially improve the accuracy and scalability of automated ECG analysis. However, a comprehensive evaluation of an end-to-end deep learning approach for ECG analysis across a wide variety of diagnostic classes has not been previously reported. Here, we develop a deep neural network (DNN) to classify 12 rhythm classes using 91,232 single-lead ECGs from 53,549 patients who used a single-lead ambulatory ECG monitoring device. When validated against an independent test dataset annotated by a consensus committee of board-certified practicing cardiologists, the DNN achieved an average area under the receiver operating characteristic curve (ROC) of 0.97. The average F1 score, which is the harmonic mean of the positive predictive value and sensitivity, for the DNN (0.837) exceeded that of average cardiologists (0.780). With specificity fixed at the average specificity achieved by cardiologists, the sensitivity of the DNN exceeded the average cardiologist sensitivity for all rhythm classes. These findings demonstrate that an end-to-end deep learning approach can classify a broad range of distinct arrhythmias from single-lead ECGs with high diagnostic performance similar to that of cardiologists. If confirmed in clinical settings, this approach could reduce the rate of misdiagnosed computerized ECG interpretations and improve the efficiency of expert human ECG interpretation by accurately triaging or prioritizing the most urgent conditions. Analysis of electrocardiograms using an end-to-end deep learning approach can detect and classify cardiac arrhythmia with high accuracy, similar to that of cardiologists.

1,632 citations


Journal ArticleDOI
04 Apr 2019-Cell
TL;DR: High-resolution density gradient fractionation and direct immunoaffinity capture are employed to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material and show that small extracellular vesicles are not vehicles of active DNA release.

1,515 citations


Journal ArticleDOI
Ditte Demontis1, Ditte Demontis2, Raymond K. Walters3, Raymond K. Walters4, Joanna Martin3, Joanna Martin5, Joanna Martin6, Manuel Mattheisen, Thomas Damm Als1, Thomas Damm Als2, Esben Agerbo2, Esben Agerbo1, Gisli Baldursson, Rich Belliveau3, Jonas Bybjerg-Grauholm7, Jonas Bybjerg-Grauholm2, Marie Bækvad-Hansen2, Marie Bækvad-Hansen7, Felecia Cerrato3, Kimberly Chambert3, Claire Churchhouse3, Claire Churchhouse4, Ashley Dumont3, Nicholas Eriksson, Michael J. Gandal, Jacqueline I. Goldstein4, Jacqueline I. Goldstein3, Katrina L. Grasby8, Jakob Grove, Olafur O Gudmundsson9, Olafur O Gudmundsson10, Christine Søholm Hansen11, Christine Søholm Hansen7, Christine Søholm Hansen2, Mads E. Hauberg2, Mads E. Hauberg1, Mads V. Hollegaard7, Mads V. Hollegaard2, Daniel P. Howrigan3, Daniel P. Howrigan4, Hailiang Huang4, Hailiang Huang3, Julian Maller3, Alicia R. Martin4, Alicia R. Martin3, Nicholas G. Martin8, Jennifer L. Moran3, Jonatan Pallesen2, Jonatan Pallesen1, Duncan S. Palmer3, Duncan S. Palmer4, Carsten Bøcker Pedersen2, Carsten Bøcker Pedersen1, Marianne Giørtz Pedersen1, Marianne Giørtz Pedersen2, Timothy Poterba3, Timothy Poterba4, Jesper Buchhave Poulsen2, Jesper Buchhave Poulsen7, Stephan Ripke3, Stephan Ripke4, Stephan Ripke12, Elise B. Robinson4, F. Kyle Satterstrom4, F. Kyle Satterstrom3, Hreinn Stefansson9, Christine Stevens3, Patrick Turley3, Patrick Turley4, G. Bragi Walters9, G. Bragi Walters10, Hyejung Won13, Hyejung Won14, Margaret J. Wright15, Ole A. Andreassen16, Philip Asherson17, Christie L. Burton18, Dorret I. Boomsma19, Bru Cormand, Søren Dalsgaard1, Barbara Franke20, Joel Gelernter21, Joel Gelernter22, Daniel H. Geschwind13, Daniel H. Geschwind14, Hakon Hakonarson23, Jan Haavik24, Jan Haavik25, Henry R. Kranzler26, Henry R. Kranzler22, Jonna Kuntsi17, Kate Langley5, Klaus-Peter Lesch27, Klaus-Peter Lesch28, Klaus-Peter Lesch29, Christel M. Middeldorp15, Christel M. Middeldorp19, Andreas Reif30, Luis Augusto Rohde31, Panos Roussos, Russell Schachar18, Pamela Sklar32, Edmund J.S. Sonuga-Barke17, Patrick F. Sullivan6, Patrick F. Sullivan33, Anita Thapar5, Joyce Y. Tung, Irwin D. Waldman34, Sarah E. Medland8, Kari Stefansson9, Kari Stefansson10, Merete Nordentoft35, Merete Nordentoft2, David M. Hougaard2, David M. Hougaard7, Thomas Werge35, Thomas Werge2, Thomas Werge11, Ole Mors36, Ole Mors2, Preben Bo Mortensen, Mark J. Daly, Stephen V. Faraone37, Anders D. Børglum2, Anders D. Børglum1, Benjamin M. Neale3, Benjamin M. Neale4 
TL;DR: A genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls identifies variants surpassing genome- wide significance in 12 independent loci and implicates neurodevelopmental pathways and conserved regions of the genome as being involved in underlying ADHD biology.
Abstract: Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.

1,436 citations


Journal ArticleDOI
TL;DR: The most useful techniques and how machine learning can promote data-driven decision making in drug discovery and development are discussed and major hurdles in the field are highlighted.
Abstract: Drug discovery and development pipelines are long, complex and depend on numerous factors. Machine learning (ML) approaches provide a set of tools that can improve discovery and decision making for well-specified questions with abundant, high-quality data. Opportunities to apply ML occur in all stages of drug discovery. Examples include target validation, identification of prognostic biomarkers and analysis of digital pathology data in clinical trials. Applications have ranged in context and methodology, with some approaches yielding accurate predictions and insights. The challenges of applying ML lie primarily with the lack of interpretability and repeatability of ML-generated results, which may limit their application. In all areas, systematic and comprehensive high-dimensional data still need to be generated. With ongoing efforts to tackle these issues, as well as increasing awareness of the factors needed to validate ML approaches, the application of ML can promote data-driven decision making and has the potential to speed up the process and reduce failure rates in drug discovery and development. Machine learning has been applied to numerous stages in the drug discovery pipeline. Here, Vamathevan and colleagues discuss the most useful techniques and how machine learning can promote data-driven decision making in drug discovery and development. They highlight major hurdles in the field, such as the required data characteristics for applying machine learning, which will need to be solved as machine learning matures.

1,159 citations


Journal ArticleDOI
Eli A. Stahl1, Eli A. Stahl2, Gerome Breen3, Andreas J. Forstner  +339 moreInstitutions (107)
TL;DR: Genome-wide analysis identifies 30 loci associated with bipolar disorder, allowing for comparisons of shared genes and pathways with other psychiatric disorders, including schizophrenia and depression.
Abstract: Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.

1,090 citations


Journal ArticleDOI
TL;DR: A convolutional neural network performs automated prediction of malignancy risk of pulmonary nodules in chest CT scan volumes and improves accuracy of lung cancer screening.
Abstract: With an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States1. Lung cancer screening using low-dose computed tomography has been shown to reduce mortality by 20–43% and is now included in US screening guidelines1–6. Existing challenges include inter-grader variability and high false-positive and false-negative rates7–10. We propose a deep learning algorithm that uses a patient’s current and prior computed tomography volumes to predict the risk of lung cancer. Our model achieves a state-of-the-art performance (94.4% area under the curve) on 6,716 National Lung Cancer Screening Trial cases, and performs similarly on an independent clinical validation set of 1,139 cases. We conducted two reader studies. When prior computed tomography imaging was not available, our model outperformed all six radiologists with absolute reductions of 11% in false positives and 5% in false negatives. Where prior computed tomography imaging was available, the model performance was on-par with the same radiologists. This creates an opportunity to optimize the screening process via computer assistance and automation. While the vast majority of patients remain unscreened, we show the potential for deep learning models to increase the accuracy, consistency and adoption of lung cancer screening worldwide. A convolutional neural network performs automated prediction of malignancy risk of pulmonary nodules in chest CT scan volumes and improves accuracy of lung cancer screening.

1,077 citations


Journal ArticleDOI
TL;DR: The initial toxicity profile of a BCMA‐directed cellular immunotherapy for patients with relapsed or refractory multiple myeloma is reported andCAR T‐cell expansion was associated with responses, and CAR T cells persisted up to 1 year after the infusion.
Abstract: Background Preclinical studies suggest that bb2121, a chimeric antigen receptor (CAR) T-cell therapy that targets B-cell maturation antigen (BCMA), has potential for the treatment of multi...

978 citations


Journal ArticleDOI
TL;DR: The current regulatory environment in the United States is summarized and comparisons are highlighted with other regions in the world, notably Europe and China, to bring the full potential of AI to the clinic.
Abstract: The development of artificial intelligence (AI)-based technologies in medicine is advancing rapidly, but real-world clinical implementation has not yet become a reality. Here we review some of the key practical issues surrounding the implementation of AI into existing clinical workflows, including data sharing and privacy, transparency of algorithms, data standardization, and interoperability across multiple platforms, and concern for patient safety. We summarize the current regulatory environment in the United States and highlight comparisons with other regions in the world, notably Europe and China.

904 citations


Journal ArticleDOI
TL;DR: Among patients with stable atherosclerosis, low‐dose methotrexate did not reduce levels of interleukin‐1β, interleUKin‐6, or C‐reactive protein and did not result in fewer cardiovascular events than placebo and was associated with elevations in liver‐enzyme levels, reductions in leukocyte counts and hematocrit levels, and a higher incidence of non–basal‐cell skin cancers than placebo.
Abstract: Background Inflammation is causally related to atherothrombosis. Treatment with canakinumab, a monoclonal antibody that inhibits inflammation by neutralizing interleukin-1β, resulted in a lower rate of cardiovascular events than placebo in a previous randomized trial. We sought to determine whether an alternative approach to inflammation inhibition with low-dose methotrexate might provide similar benefit. Methods We conducted a randomized, double-blind trial of low-dose methotrexate (at a target dose of 15 to 20 mg weekly) or matching placebo in 4786 patients with previous myocardial infarction or multivessel coronary disease who additionally had either type 2 diabetes or the metabolic syndrome. All participants received 1 mg of folate daily. The primary end point at the onset of the trial was a composite of nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. Near the conclusion of the trial, but before unblinding, hospitalization for unstable angina that led to urgent revas...

Journal ArticleDOI
12 Feb 2019-JAMA
TL;DR: Among ambulatory adults with hypertension, treating to a systolic blood pressure goal of less than 120 mm Hg compared with a goal of more than 140mm Hg did not result in a significant reduction in the risk of probable dementia.
Abstract: Importance There are currently no proven treatments to reduce the risk of mild cognitive impairment and dementia. Objective To evaluate the effect of intensive blood pressure control on risk of dementia. Design, Setting, and Participants Randomized clinical trial conducted at 102 sites in the United States and Puerto Rico among adults aged 50 years or older with hypertension but without diabetes or history of stroke. Randomization began on November 8, 2010. The trial was stopped early for benefit on its primary outcome (a composite of cardiovascular events) and all-cause mortality on August 20, 2015. The final date for follow-up of cognitive outcomes was July 22, 2018. Interventions Participants were randomized to a systolic blood pressure goal of either less than 120 mm Hg (intensive treatment group; n = 4678) or less than 140 mm Hg (standard treatment group; n = 4683). Main Outcomes and Measures The primary cognitive outcome was occurrence of adjudicated probable dementia. Secondary cognitive outcomes included adjudicated mild cognitive impairment and a composite outcome of mild cognitive impairment or probable dementia. Results Among 9361 randomized participants (mean age, 67.9 years; 3332 women [35.6%]), 8563 (91.5%) completed at least 1 follow-up cognitive assessment. The median intervention period was 3.34 years. During a total median follow-up of 5.11 years, adjudicated probable dementia occurred in 149 participants in the intensive treatment group vs 176 in the standard treatment group (7.2 vs 8.6 cases per 1000 person-years; hazard ratio [HR], 0.83; 95% CI, 0.67-1.04). Intensive BP control significantly reduced the risk of mild cognitive impairment (14.6 vs 18.3 cases per 1000 person-years; HR, 0.81; 95% CI, 0.69-0.95) and the combined rate of mild cognitive impairment or probable dementia (20.2 vs 24.1 cases per 1000 person-years; HR, 0.85; 95% CI, 0.74-0.97). Conclusions and Relevance Among ambulatory adults with hypertension, treating to a systolic blood pressure goal of less than 120 mm Hg compared with a goal of less than 140 mm Hg did not result in a significant reduction in the risk of probable dementia. Because of early study termination and fewer than expected cases of dementia, the study may have been underpowered for this end point. Trial Registration ClinicalTrials.gov Identifier:NCT01206062

Journal ArticleDOI
28 May 2019-JAMA
TL;DR: In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects.
Abstract: Importance Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. Objective To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs). Design, Settings, and Participants Retrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensuskmeans clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737). Exposures All clinical and laboratory variables in the electronic health record. Main Outcomes and Measures Derived phenotype (α, β, γ,and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs. Results The derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P 33% chance of benefit to >60% chance of harm). Conclusions and Relevance In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.

Journal ArticleDOI
TL;DR: This Consensus Report is intended to provide clinical professionals with evidence-based guidance about individualizing nutrition therapy for adults with diabetes or predi diabetes and previous ADA nutrition position statements, which now includes information on prediabetes.
Abstract: This Consensus Report is intended to provide clinical professionals with evidence-based guidance about individualizing nutrition therapy for adults with diabetes or prediabetes. Strong evidence supports the efficacy and cost-effectiveness of nutrition therapy as a component of quality diabetes care, including its integration into the medical management of diabetes; therefore, it is important that all members of the health care team know and champion the benefits of nutrition therapy and key nutrition messages. Nutrition counseling that works toward improving or maintaining glycemic targets, achieving weight management goals, and improving cardiovascular risk factors (e.g., blood pressure, lipids, etc.) within individualized treatment goals is recommended for all adults with diabetes and prediabetes. Though it might simplify messaging, a “one-size-fits-all” eating plan is not evident for the prevention or management of diabetes, and it is an unrealistic expectation given the broad spectrum of people affected by diabetes and prediabetes, their cultural backgrounds, personal preferences, co-occurring conditions (often referred to as comorbidities), and socioeconomic settings in which they live. Research provides clarity on many food choices and eating patterns that can help people achieve health goals and quality of life. The American Diabetes Association (ADA) emphasizes that medical nutrition therapy (MNT) is fundamental in the overall diabetes management plan, and the need for MNT should be reassessed frequently by health care providers in collaboration with people with diabetes across the life span, with special attention during times of changing health status and life stages (1–3). This Consensus Report now includes information on prediabetes, and previous ADA nutrition position statements, the last of which was published in 2014 (4), did not. Unless otherwise noted, the research reviewed was limited to those studies conducted in adults diagnosed with prediabetes, type 1 diabetes, and/or type 2 diabetes. Nutrition therapy for children with diabetes or women …

Journal ArticleDOI
04 Jan 2019
TL;DR: This survey study provides nationally representative estimates of the distribution, severity, and factors associated with adult food allergy in the United States.
Abstract: Importance Food allergy is a costly, potentially life-threatening condition. Although studies have examined the prevalence of childhood food allergy, little is known about prevalence, severity, or health care utilization related to food allergies among US adults. Objective To provide nationally representative estimates of the distribution, severity, and factors associated with adult food allergies. Design, Setting, and Participants In this cross-sectional survey study of US adults, surveys were administered via the internet and telephone from October 9, 2015, to September 18, 2016. Participants were first recruited from NORC at the University of Chicago’s probability-based AmeriSpeak panel, and additional participants were recruited from the non–probability-based Survey Sampling International (SSI) panel. Exposures Demographic and allergic participant characteristics. Main Outcomes and Measures Self-reported food allergies were the main outcome and were considered convincing if reported symptoms to specific allergens were consistent with IgE-mediated reactions. Diagnosis history to specific allergens and food allergy–related health care use were also primary outcomes. Estimates were based on this nationally representative sample using small-area estimation and iterative proportional fitting methods. To increase precision, AmeriSpeak data were augmented by calibration-weighted, non–probability-based responses from SSI. Results Surveys were completed by 40 443 adults (mean [SD] age, 46.6 [20.2] years), with a survey completion rate of 51.2% observed among AmeriSpeak panelists (n = 7210) and 5.5% among SSI panelists (n = 33 233). Estimated convincing food allergy prevalence among US adults was 10.8% (95% CI, 10.4%-11.1%), although 19.0% (95% CI, 18.5%-19.5%) of adults self-reported a food allergy. The most common allergies were shellfish (2.9%; 95% CI, 2.7%-3.1%), milk (1.9%; 95% CI, 1.8%-2.1%), peanut (1.8%; 95% CI, 1.7%-1.9%), tree nut (1.2%; 95% CI, 1.1%-1.3%), and fin fish (0.9%; 95% CI, 0.8%-1.0%). Among food-allergic adults, 51.1% (95% CI, 49.3%-52.9%) experienced a severe food allergy reaction, 45.3% (95% CI, 43.6%-47.1%) were allergic to multiple foods, and 48.0% (95% CI, 46.2%-49.7%) developed food allergies as an adult. Regarding health care utilization, 24.0% (95% CI, 22.6%-25.4%) reported a current epinephrine prescription, and 38.3% (95% CI, 36.7%-40.0%) reported at least 1 food allergy–related lifetime emergency department visit. Conclusions and Relevance These data suggest that at least 10.8% (>26 million) of US adults are food allergic, whereas nearly 19% of adults believe that they have a food allergy. Consequently, these findings suggest that it is crucial that adults with suspected food allergy receive appropriate confirmatory testing and counseling to ensure food is not unnecessarily avoided and quality of life is not unduly impaired.

Journal ArticleDOI
TL;DR: The role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora is reviewed and the implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.
Abstract: The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.


Journal ArticleDOI
TL;DR: To update evidence‐based medicine recommendations for treating nonmotor symptoms in Parkinson's disease, the World Health Organization (WHO) selected Austria as a preferred destination for research and clinical trials.
Abstract: Objective To update evidence‐based medicine recommendations for treating nonmotor symptoms in Parkinson's disease (PD).

Journal ArticleDOI
TL;DR: Significant increases in use of THA and TKA are expected in the United States in the future, if the current trend continues and a policy change may be needed to meet increased demand.
Abstract: Objective To project future total hip and knee joint arthroplasty (THA, TKA) use in the United States to 2040. Methods We used the 2000–2014 US National Inpatient Sample (NIS) combined with Census Bureau data to develop projections for primary THA and TKA from 2020 to 2040 using polynomial regression to account for the nonlinearity and interactions between the variables, assuming the underlying distribution of the number of THA/TKA to be Poisson distributed. We performed sensitivity analyses using a negative binomial regression to account for overdispersion. Results Predicted total annual counts (95% prediction intervals) for THA in the United States by 2020, 2025, 2030, and 2040 are (in thousands): 498 (475, 523), 652 (610, 696), 850 (781, 925), and 1429 (1265, 1615), respectively. For primary TKA, predicted total annual counts for 2020, 2025, 2030, and 2040 are (in thousands): 1065 (937, 1211), 1272 (1200, 1710), 1921 (1530, 2410), and 3416 (2459, 4745), respectively. Compared to the available 2014 NIS numbers, the percent increases in projected total annual US use for primary THA and TKA in 2020, 2025, 2030, and 2040 are as follows: primary THA, by 34%, 75%, 129%, and 284%; and primary TKA, 56%, 110%, 182%, and 401%, respectively. Primary THA and TKA use is projected to increase for both females and males, in all age groups. Conclusion Significant increases in use of THA and TKA are expected in the United States in the future, if the current trend continues. The increased use is evident across age groups in both females and males. A policy change may be needed to meet increased demand.

Journal ArticleDOI
TL;DR: A battery-free implantable pressure sensor made entirely of biodegradable materials and based on fringe-field capacitor technology can wirelessly measure arterial blood flow in live rats and may be advantageous in real-time post-operative monitoring of blood flow after reconstructive surgery.
Abstract: The ability to monitor blood flow is critical to patient recovery and patient outcomes after complex reconstructive surgeries. Clinically available wired implantable monitoring technology requires careful fixation for accurate detection and needs to be removed after use. Here, we report the design of a pressure sensor, made entirely of biodegradable materials and based on fringe-field capacitor technology, for measuring arterial blood flow in both contact and non-contact modes. The sensor is operated wirelessly through inductive coupling, has minimal hysteresis, fast response times, excellent cycling stability, is highly robust, allows for easy mounting and eliminates the need for removal, thus reducing the risk of vessel trauma. We demonstrate the operation of the sensor with a custom-made artificial artery model and in vivo in rats. This technology may be advantageous in real-time post-operative monitoring of blood flow after reconstructive surgery.

Journal ArticleDOI
TL;DR: It is demonstrated, across multiple species and tumor models, that obesity results in increased immune aging, tumor progression and PD-1-mediated T cell dysfunction which is driven, at least in part, by leptin.
Abstract: The recent successes of immunotherapy have shifted the paradigm in cancer treatment, but because only a percentage of patients are responsive to immunotherapy, it is imperative to identify factors impacting outcome. Obesity is reaching pandemic proportions and is a major risk factor for certain malignancies, but the impact of obesity on immune responses, in general and in cancer immunotherapy, is poorly understood. Here, we demonstrate, across multiple species and tumor models, that obesity results in increased immune aging, tumor progression and PD-1-mediated T cell dysfunction which is driven, at least in part, by leptin. However, obesity is also associated with increased efficacy of PD-1/PD-L1 blockade in both tumor-bearing mice and clinical cancer patients. These findings advance our understanding of obesity-induced immune dysfunction and its consequences in cancer and highlight obesity as a biomarker for some cancer immunotherapies. These data indicate a paradoxical impact of obesity on cancer. There is heightened immune dysfunction and tumor progression but also greater anti-tumor efficacy and survival after checkpoint blockade which directly targets some of the pathways activated in obesity.

Journal ArticleDOI
TL;DR: The results of analyses designed to create an optimal short‐form PCL for DSM‐5 (PCL‐5) using both machine learning and conventional scale development methods are presented.
Abstract: Background Although several short-forms of the posttraumatic stress disorder (PTSD) Checklist (PCL) exist, all were developed using heuristic methods. This report presents the results of analyses designed to create an optimal short-form PCL for DSM-5 (PCL-5) using both machine learning and conventional scale development methods. Methods The short-form scales were developed using independent datasets collected by the Army Study to Assess Risk and Resilience among Service members. We began by using a training dataset (n = 8,917) to fit short-form scales with between 1 and 8 items using different statistical methods (exploratory factor analysis, stepwise logistic regression, and a new machine learning method to find an optimal integer-scored short-form scale) to predict dichotomous PTSD diagnoses determined using the full PCL-5. A smaller subset of best short-form scales was then evaluated in an independent validation sample (n = 11,728) to select one optimal short-form scale based on multiple operating characteristics (area under curve [AUC], calibration, sensitivity, specificity, net benefit). Results Inspection of AUCs in the training sample and replication in the validation sample led to a focus on 4-item integer-scored short-form scales selected with stepwise regression. Brier scores in the validation sample showed that a number of these scales had comparable calibration (0.015-0.032) and AUC (0.984-0.994), but that one had consistently highest net benefit across a plausible range of decision thresholds. Conclusions The recommended 4-item integer-scored short-form PCL-5 generates diagnoses that closely parallel those of the full PCL-5, making it well-suited for screening.

Journal ArticleDOI
TL;DR: Clinical trials should be designed to test drug efficacy and safety according to sex, age, reproductive stage (i.e., menopause), and synthetic hormone use, to fill current gaps and implement precision medicine for patients with NAFLD.

Journal ArticleDOI
TL;DR: It is demonstrated that at steady state, TIMD4+LYVE1+MHC-IIloCCR2− resident cardiac macrophages self-renew with negligible blood monocyte input and a hierarchy of monocyte contribution to functionally distinct macrophage subsets is revealed.
Abstract: Macrophages promote both injury and repair after myocardial infarction, but discriminating functions within mixed populations remains challenging. Here we used fate mapping, parabiosis and single-cell transcriptomics to demonstrate that at steady state, TIMD4+LYVE1+MHC-IIloCCR2− resident cardiac macrophages self-renew with negligible blood monocyte input. Monocytes partially replaced resident TIMD4–LYVE1–MHC-IIhiCCR2− macrophages and fully replaced TIMD4−LYVE1−MHC-IIhiCCR2+ macrophages, revealing a hierarchy of monocyte contribution to functionally distinct macrophage subsets. Ischemic injury reduced TIMD4+ and TIMD4– resident macrophage abundance, whereas CCR2+ monocyte-derived macrophages adopted multiple cell fates within infarcted tissue, including those nearly indistinguishable from resident macrophages. Recruited macrophages did not express TIMD4, highlighting the ability of TIMD4 to track a subset of resident macrophages in the absence of fate mapping. Despite this similarity, inducible depletion of resident macrophages using a Cx3cr1-based system led to impaired cardiac function and promoted adverse remodeling primarily within the peri-infarct zone, revealing a nonredundant, cardioprotective role of resident cardiac macrophages. Epelman and colleagues use fate mapping and single-cell transcriptomics to describe the dynamics of resident and recruited cardiac macrophages during ischemic injury.

Journal ArticleDOI
21 Nov 2019-Nature
TL;DR: It is shown that bacteriophages can specifically target cytolytic E. faecalis, which provides a method for precisely editing the intestinal microbiota, and is linked with more severe clinical outcomes and increased mortality in patients with alcoholic hepatitis.
Abstract: Chronic liver disease due to alcohol-use disorder contributes markedly to the global burden of disease and mortality1–3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-associated liver disease. The gut microbiota promotes ethanol-induced liver disease in mice4, but little is known about the microbial factors that are responsible for this process. Here we identify cytolysin—a two-subunit exotoxin that is secreted by Enterococcus faecalis5,6—as a cause of hepatocyte death and liver injury. Compared with non-alcoholic individuals or patients with alcohol-use disorder, patients with alcoholic hepatitis have increased faecal numbers of E. faecalis. The presence of cytolysin-positive (cytolytic) E. faecalis correlated with the severity of liver disease and with mortality in patients with alcoholic hepatitis. Using humanized mice that were colonized with bacteria from the faeces of patients with alcoholic hepatitis, we investigated the therapeutic effects of bacteriophages that target cytolytic E. faecalis. We found that these bacteriophages decrease cytolysin in the liver and abolish ethanol-induced liver disease in humanized mice. Our findings link cytolytic E. faecalis with more severe clinical outcomes and increased mortality in patients with alcoholic hepatitis. We show that bacteriophages can specifically target cytolytic E. faecalis, which provides a method for precisely editing the intestinal microbiota. A clinical trial with a larger cohort is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with alcoholic hepatitis. In patients with alcoholic hepatitis, cytolysin-positive Enterococcus faecalis strains are correlated with liver disease severity and increased mortality, and in mouse models these strains can be specifically targeted by bacteriophages.

Journal ArticleDOI
29 Nov 2019-Science
TL;DR: The list of genes likely to be influenced by noncoding variants in AD is revised and expanded and the probable cell types in which they function are suggested to help better understand common genetic variation associated with brain diseases.
Abstract: Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.

Journal ArticleDOI
TL;DR: It is found that injured host axons regenerate into 3D biomimetic scaffolds and synapse onto NPCs implanted into the device and that implanted NPCs in turn extend axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve functional outcomes.
Abstract: Current methods for bioprinting functional tissue lack appropriate biofabrication techniques to build complex 3D microarchitectures essential for guiding cell growth and promoting tissue maturation1. 3D printing of central nervous system (CNS) structures has not been accomplished, possibly owing to the complexity of CNS architecture. Here, we report the use of a microscale continuous projection printing method (μCPP) to create a complex CNS structure for regenerative medicine applications in the spinal cord. μCPP can print 3D biomimetic hydrogel scaffolds tailored to the dimensions of the rodent spinal cord in 1.6 s and is scalable to human spinal cord sizes and lesion geometries. We tested the ability of µCPP 3D-printed scaffolds loaded with neural progenitor cells (NPCs) to support axon regeneration and form new ‘neural relays’ across sites of complete spinal cord injury in vivo in rodents1,2. We find that injured host axons regenerate into 3D biomimetic scaffolds and synapse onto NPCs implanted into the device and that implanted NPCs in turn extend axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve functional outcomes. Thus, 3D biomimetic scaffolds offer a means of enhancing CNS regeneration through precision medicine. Fast scalable 3D bioprinting generates biocompatible and biomimetic scaffolds to precisely fit the geometries of spinal cord lesions, promote axonal regeneration, and support stem cell grafts to promote recovery from spinal cord injury in rodents.

Journal ArticleDOI
03 Sep 2019-JAMA
TL;DR: Among outpatient health care personnel, N95 respirators vs medical masks as worn by participants in this trial resulted in no significant difference in the incidence of laboratory-confirmed influenza.
Abstract: Importance Clinical studies have been inconclusive about the effectiveness of N95 respirators and medical masks in preventing health care personnel (HCP) from acquiring workplace viral respiratory infections. Objective To compare the effect of N95 respirators vs medical masks for prevention of influenza and other viral respiratory infections among HCP. Design, Setting, and Participants A cluster randomized pragmatic effectiveness study conducted at 137 outpatient study sites at 7 US medical centers between September 2011 and May 2015, with final follow-up in June 2016. Each year for 4 years, during the 12-week period of peak viral respiratory illness, pairs of outpatient sites (clusters) within each center were matched and randomly assigned to the N95 respirator or medical mask groups. Interventions Overall, 1993 participants in 189 clusters were randomly assigned to wear N95 respirators (2512 HCP-seasons of observation) and 2058 in 191 clusters were randomly assigned to wear medical masks (2668 HCP-seasons) when near patients with respiratory illness. Main Outcomes and Measures The primary outcome was the incidence of laboratory-confirmed influenza. Secondary outcomes included incidence of acute respiratory illness, laboratory-detected respiratory infections, laboratory-confirmed respiratory illness, and influenzalike illness. Adherence to interventions was assessed. Results Among 2862 randomized participants (mean [SD] age, 43 [11.5] years; 2369 [82.8%]) women), 2371 completed the study and accounted for 5180 HCP-seasons. There were 207 laboratory-confirmed influenza infection events (8.2% of HCP-seasons) in the N95 respirator group and 193 (7.2% of HCP-seasons) in the medical mask group (difference, 1.0%, [95% CI, −0.5% to 2.5%];P = .18) (adjusted odds ratio [OR], 1.18 [95% CI, 0.95-1.45]). There were 1556 acute respiratory illness events in the respirator group vs 1711 in the mask group (difference, −21.9 per 1000 HCP-seasons [95% CI, −48.2 to 4.4];P = .10); 679 laboratory-detected respiratory infections in the respirator group vs 745 in the mask group (difference, −8.9 per 1000 HCP-seasons, [95% CI, −33.3 to 15.4];P = .47); 371 laboratory-confirmed respiratory illness events in the respirator group vs 417 in the mask group (difference, −8.6 per 1000 HCP-seasons [95% CI, −28.2 to 10.9];P = .39); and 128 influenzalike illness events in the respirator group vs 166 in the mask group (difference, −11.3 per 1000 HCP-seasons [95% CI, −23.8 to 1.3];P = .08). In the respirator group, 89.4% of participants reported “always” or “sometimes” wearing their assigned devices vs 90.2% in the mask group. Conclusions and Relevance Among outpatient health care personnel, N95 respirators vs medical masks as worn by participants in this trial resulted in no significant difference in the incidence of laboratory-confirmed influenza. Trial Registration ClinicalTrials.gov Identifier:NCT01249625

Journal ArticleDOI
TL;DR: Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery, and the increasing availability of gene sequencing and electrophysiological analysis of gene variants provides the opportunity to better target existing therapies in a personalized manner.
Abstract: Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated wit...

Posted ContentDOI
26 Jan 2019-bioRxiv
TL;DR: A meta-analysis of genome-wide studies of anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome revealed a meaningful structure within the eight disorders identifying three groups of inter-related disorders.
Abstract: Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed a meta-analysis of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders identifying three groups of inter-related disorders. We detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning in the second trimester prenatally, and play prominent roles in a suite of neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.