scispace - formally typeset
Search or ask a question
Institution

Veterans Health Administration

GovernmentWashington D.C., District of Columbia, United States
About: Veterans Health Administration is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Population & Veterans Affairs. The organization has 63820 authors who have published 98417 publications receiving 4835425 citations. The organization is also known as: VHA.


Papers
More filters
Journal ArticleDOI
21 Nov 2014-Science
TL;DR: The classic paradigms of wound healing are reviewed and how recent discoveries have enriched understanding of this process are evaluated, with an emphasis on cell-based therapies and skin transplantation.
Abstract: The ability of the skin to repair itself after injury is vital to human survival and is disrupted in a spectrum of disorders. The process of cutaneous wound healing is complex, requiring a coordinated response by immune cells, hematopoietic cells, and resident cells of the skin. We review the classic paradigms of wound healing and evaluate how recent discoveries have enriched our understanding of this process. We evaluate current and experimental approaches to treating cutaneous wounds, with an emphasis on cell-based therapies and skin transplantation.

528 citations

Journal ArticleDOI
TL;DR: Five major DNA repair pathways are homologous recombinational repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), base excision Repair (BER) and mismatch repair (MMR), and key proteins occur with dual functions in DNA damage sensing/repair and apoptosis.
Abstract: Two systems are essential in humans for genome integrity, DNA repair and apoptosis. Cells that are defective in DNA repair tend to accumulate excess DNA damage. Cells defective in apoptosis tend to survive with excess DNA damage and thus allow DNA replication past DNA damages, causing mutations leading to carcinogenesis. It has recently become apparent that key proteins which contribute to cellular survival by acting in DNA repair become executioners in the face of excess DNA damage. Five major DNA repair pathways are homologous recombinational repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR). In each of these DNA repair pathways, key proteins occur with dual functions in DNA damage sensing/repair and apoptosis. Proteins with these dual roles occur in: (1) HRR (BRCA1, ATM, ATR, WRN, BLM, Tip60 and p53); (2) NHEJ (the catalytic subunit of DNA-PK); (3) NER (XPB, XPD, p53 and p33 ING1b ); (4) BER (Ref-1/Ape, poly(ADP-ribose) polymerase-1 (PARP-1) and p53); (5) MMR (MSH2, MSH6, MLH1 and PMS2). For a number of these dual-role proteins, germ line mutations causing them to be defective also predispose individuals to cancer. Such proteins include BRCA1, ATM, WRN, BLM, p53, XPB, XPD, MSH2, MSH6, MLH1 and PMS2. © 2002 Elsevier Science B.V. All rights reserved.

528 citations

Journal ArticleDOI
TL;DR: To update evidence‐based medicine recommendations for treating nonmotor symptoms in Parkinson's disease, the World Health Organization (WHO) selected Austria as a preferred destination for research and clinical trials.
Abstract: Objective To update evidence‐based medicine recommendations for treating nonmotor symptoms in Parkinson's disease (PD).

527 citations


Authors

Showing all 63886 results

NameH-indexPapersCitations
Michael Karin236704226485
Paul M. Ridker2331242245097
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
John Q. Trojanowski2261467213948
Fred H. Gage216967185732
Edward Giovannucci2061671179875
Rob Knight2011061253207
Frank E. Speizer193636135891
Stephen V. Faraone1881427140298
Scott M. Grundy187841231821
Paul G. Richardson1831533155912
Peter W.F. Wilson181680139852
Dennis S. Charney179802122408
Kenneth C. Anderson1781138126072
Network Information
Related Institutions (5)
Medical University of South Carolina
45.4K papers, 1.7M citations

85% related

University of Texas Health Science Center at Houston
42.5K papers, 2.1M citations

85% related

University of Maryland, Baltimore
64.7K papers, 2.9M citations

84% related

University of California, San Francisco
186.2K papers, 12M citations

84% related

Anschutz Medical Campus
28.1K papers, 1.4M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
2022137
20216,161
20205,712
20195,171
20184,497