Institution

# Vienna University of Technology

Education•Vienna, Austria•

About: Vienna University of Technology is a(n) education organization based out in Vienna, Austria. It is known for research contribution in the topic(s): Laser & Cloud computing. The organization has 16723 authors who have published 49341 publication(s) receiving 1302168 citation(s).

Topics: Laser, Cloud computing, Finite element method, Magnetization, Population

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.

Abstract: We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order ${\mathit{N}}_{\mathrm{atoms}}^{3}$ operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ``metric'' and a special ``preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order ${\mathit{N}}_{\mathrm{atoms}}^{2}$ scaling is found for systems containing up to 1000 electrons. If we take into account that the number of k points can be decreased linearly with the system size, the overall scaling can approach ${\mathit{N}}_{\mathrm{atoms}}$. We have implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable. \textcopyright{} 1996 The American Physical Society.

64,484 citations

••

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.

Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

46,297 citations

••

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

Abstract: We present a detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set. We will discuss: (a) partial occupancies within the framework of the linear tetrahedron method and the finite temperature density-functional theory, (b) iterative methods for the diagonalization of the Kohn-Sham Hamiltonian and a discussion of an efficient iterative method based on the ideas of Pulay's residual minimization, which is close to an order Natoms2 scaling even for relatively large systems, (c) efficient Broyden-like and Pulay-like mixing methods for the charge density including a new special ‘preconditioning’ optimized for a plane-wave basis set, (d) conjugate gradient methods for minimizing the electronic free energy with respect to all degrees of freedom simultaneously. We have implemented these algorithms within a powerful package called VAMP (Vienna ab-initio molecular-dynamics package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semi-conducting surfaces, phonons in simple metals, transition metals and semiconductors) and turned out to be very reliable.

40,008 citations

••

TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.

Abstract: We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.

27,360 citations

••

TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.

Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

13,961 citations

##### Authors

Showing all 16723 results

Name | H-index | Papers | Citations |
---|---|---|---|

Krzysztof Matyjaszewski | 169 | 1431 | 128585 |

Wolfgang Wagner | 156 | 2342 | 123391 |

Marco Zanetti | 145 | 1439 | 104610 |

Sridhara Dasu | 140 | 1675 | 103185 |

Duncan Carlsmith | 138 | 1660 | 103642 |

Ulrich Heintz | 136 | 1688 | 99829 |

Matthew Herndon | 133 | 1732 | 97466 |

Frank Würthwein | 133 | 1584 | 94613 |

Alain Hervé | 132 | 1279 | 87763 |

Manfred Jeitler | 132 | 1278 | 89645 |

David Taylor | 131 | 2469 | 93220 |

Roberto Covarelli | 131 | 1516 | 89981 |

Patricia McBride | 129 | 1230 | 81787 |

David Smith | 129 | 2184 | 100917 |

Lindsey Gray | 129 | 1170 | 81317 |