scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Cloud computing. The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Proceedings Article
03 Aug 2013
TL;DR: It is shown how the existing definitions of stable and preferred semantics can be improved and generalized to arbitrary frameworks and preference handling methods for ADFs are introduced, allowing for both reasoning with and about preferences.
Abstract: We present various new concepts and results related to abstract dialectical frameworks (ADFs), a powerful generalization of Dung's argumentation frameworks (AFs). In particular, we show how the existing definitions of stable and preferred semantics which are restricted to the subcase of so-called bipolar ADFs can be improved and generalized to arbitrary frameworks. Furthermore, we introduce preference handling methods for ADFs, allowing for both reasoning with and about preferences. Finally, we present an implementation based on an encoding in answer set programming.

176 citations

Proceedings ArticleDOI
20 May 2012
TL;DR: EVILSEED leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web, and increases the "toxicity" of the input URL stream.
Abstract: Malicious web pages that use drive-by download attacks or social engineering techniques to install unwanted software on a user's computer have become the main avenue for the propagation of malicious code. To search for malicious web pages, the first step is typically to use a crawler to collect URLs that are live on the Internet. Then, fast prefiltering techniques are employed to reduce the amount of pages that need to be examined by more precise, but slower, analysis tools (such as honey clients). While effective, these techniques require a substantial amount of resources. A key reason is that the crawler encounters many pages on the web that are benign, that is, the "toxicity" of the stream of URLs being analyzed is low. In this paper, we present EVILSEED, an approach to search the web more efficiently for pages that are likely malicious. EVILSEED starts from an initial seed of known, malicious web pages. Using this seed, our system automatically generates search engines queries to identify other malicious pages that are similar or related to the ones in the initial seed. By doing so, EVILSEED leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. In other words EVILSEED increases the "toxicity" of the input URL stream. Also, we envision that the features that EVILSEED presents could be directly applied by search engines in their prefilters. We have implemented our approach, and we evaluated it on a large-scale dataset. The results show that EVILSEED is able to identify malicious web pages more efficiently when compared to crawler-based approaches.

176 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society.
Abstract: The Sustainable Development Goals (SDGs) of the United Nations Agenda 2030 represent an ambitious blueprint to reduce inequalities globally and achieve a sustainable future for all mankind. Meeting the SDGs for water requires an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society. To date, water management practice is dominated by technocratic, scenario-based approaches that may work well in the short term but can result in unintended consequences in the long term due to limited accounting of dynamic feedbacks between the natural, technical, and social dimensions of human-water systems. The discipline of sociohydrology has an important role to play in informing policy by developing a generalizable understanding of phenomena that arise from interactions between water and human systems. To explain these phenomena, sociohydrology must address several scientific challenges to strengthen the field and broaden its scope. These include engagement with social scientists to accommodate social heterogeneity, power relations, trust, cultural beliefs, and cognitive biases, which strongly influence the way in which people alter, and adapt to, changing hydrological regimes. It also requires development of new methods to formulate and test alternative hypotheses for the explanation of emergent phenomena generated by feedbacks between water and society. Advancing sociohydrology in these ways therefore represents a major contribution toward meeting the targets set by the SDGs, the societal grand challenge of our time.

176 citations

Journal ArticleDOI
24 Aug 2018-Science
TL;DR: TiO2 selectively adsorbs atmospheric carboxylic acids that are typically present in parts-per-billion concentrations while effectively repelling other adsorbates, such as alcohols, that are present in much higher concentrations.
Abstract: Researchers around the world have observed the formation of molecularly ordered structures of unknown origin on the surface of titanium dioxide (TiO2) photocatalysts exposed to air and solution. Using a combination of atomic-scale microscopy and spectroscopy, we show that TiO2 selectively adsorbs atmospheric carboxylic acids that are typically present in parts-per-billion concentrations while effectively repelling other adsorbates, such as alcohols, that are present in much higher concentrations. The high affinity of the surface for carboxylic acids is attributed to their bidentate binding. These self-assembled monolayers have the unusual property of being both hydrophobic and highly water-soluble, which may contribute to the self-cleaning properties of TiO2. This finding is relevant to TiO2 photocatalysis, because the self-assembled carboxylate monolayers block the undercoordinated surface cation sites typically implicated in photocatalysis.

176 citations

Journal ArticleDOI
TL;DR: In this article, a quasi-analytical derived flood frequency model is proposed to account for both types of seasonalities, including seasonal variability of storm characteristics and seasonality of rainfall and evapotranspiration.
Abstract: Derived flood frequency models can be used to study climate and land use change effects on the flood frequency curve. Intra-annual (i.e., within year) climate variability strongly impacts upon the flood frequency characteristics in two ways: in a direct way through the seasonal variability of storm characteristics and indirectly through the seasonality of rainfall and evapotranspiration which then affect the antecedent catchment conditions for individual storm events. In this paper we propose a quasi-analytical derived flood frequency model that is able to account for both types of seasonalities. The model treats individual events separately. It consists of a rainfall model with seasonally varying parameters. Increased flood peaks, as compared to block rainfall, due to random within-storm rainfall time patterns are represented by a factor that is a function of the ratio of storm duration and catchment response time. Event runoff coefficients are allowed to vary seasonally and include a random component. Their statistical characteristics are derived from long-term water balance simulations. The components of the derived flood frequency model are integrated in probability space to derive monthly flood frequency curves. These are then combined into annual flood frequency curves. Comparisons with Monte Carlo simulations using parameters that are typical of Austrian catchments indicate that the approximations used here are appropriate. We perform sensitivity analyses to explore the effects of the interaction of rainfall and antecedent soil moisture seasonalities on the flood frequency curve. When the two seasonalities are in phase, there is resonance, which increases the flood frequency curve dramatically. We are also able to isolate the contributions of individual months to the annual flood frequency curve. Monthly flood frequency curves cross over for the parameters chosen here, as extreme floods tend to mainly occur in summer while less extreme floods may occur throughout the year.

175 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,527
20202,811
20192,846
20182,650