scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Cloud computing. The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed a large, consistent and reliable dataset of floods in Africa and found that intensive and unplanned human settlements in flood-prone areas appeared to be playing a major role in increasing flood risk.
Abstract: [1] Flood-related fatalities in Africa, as well as associated economic losses, have increased dramatically over the past half-century. There is a growing global concern about the need to identify the causes for such increased flood damages. To this end, we analyze a large, consistent and reliable dataset of floods in Africa. Identification of causes is not easy given the diverse economic settings, demographic distribution and hydro-climatic conditions of the African continent. On the other hand, many African river basins have a relatively low level of human disturbance and, therefore, provide a unique opportunity to analyze climatic effects on floods. We find that intensive and unplanned human settlements in flood-prone areas appears to be playing a major role in increasing flood risk. Timely and economically sustainable actions, such as the discouragement of human settlements in flood-prone areas and the introduction of early warning systems are, therefore, urgently needed.

331 citations

Journal ArticleDOI
David L. Hawksworth1, David L. Hawksworth2, Pedro W. Crous3, Scott A. Redhead, Don R. Reynolds4, Robert A. Samson3, Keith A. Seifert, John W. Taylor4, Michael J. Wingfield5, Özlem Abaci6, Catherine Aime7, Ahmet Asan8, Feng-Yan Bai, Z. Wilhelm de Beer5, Dominik Begerow9, Derya Berikten10, Teun Boekhout3, Peter K. Buchanan11, Treena I. Burgess12, Walter Buzina13, Lei Cai, Paul F. Cannon14, J. Leland Crane15, Ulrike Damm3, Heide Marie Daniel16, Anne D. van Diepeningen3, Irina S. Druzhinina17, Paul S. Dyer18, Ursula Eberhardt3, Jack W. Fell19, Jens Christian Frisvad20, David M. Geiser21, József Geml22, Chirlei Glienke23, Tom Gräfenhan24, Johannes Z. Groenewald3, Marizeth Groenewald3, Johannes de Gruyter25, Eveline Guého-Kellermann, Liang-Dong Guo, David S. Hibbett26, Seung-Beom Hong27, G. Sybren de Hoog2, Jos Houbraken3, Sabine M. Huhndorf28, Kevin D. Hyde, Ahmed Ismail3, Peter R. Johnston11, Duygu Göksay Kadaifciler29, Paul M. Kirk30, Urmas Kõljalg31, Cletus P. Kurtzman32, Paul Emile Lagneau, C. André Lévesque, Xingzhong Liu, Lorenzo Lombard3, Wieland Meyer15, Andrew N. Miller33, David W. Minter, Mohammad Javad Najafzadeh34, Lorelei L. Norvell, Svetlana Ozerskaya35, Rasime Ozic10, Shaun R. Pennycook11, Stephen W. Peterson32, Olga Vinnere Pettersson36, W. Quaedvlieg3, Vincent Robert3, Constantino Ruibal2, Johan Schnürer36, Hans Josef Schroers, Roger G. Shivas, Bernard Slippers5, Henk Spierenburg3, Masako Takashima, Evrim Taskin37, Marco Thines38, Ulf Thrane20, Alev Haliki Uztan6, Marcel van Raak25, János Varga39, Aida Vasco40, Gerard J.M. Verkley3, S.I.R. Videira3, Ronald P. de Vries3, Bevan S. Weir11, Neriman Yilmaz3, Andrey Yurkov9, Ning Zhang 
01 Jun 2011
TL;DR: The Amsterdam Declaration on Fungal Nomenclature recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered.
Abstract: The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented.

328 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a framework for identifying types of causative mechanisms of floods, i.e., the focus is on the catchment state and the atmospheric inputs rather than on atmospheric circulation patterns.
Abstract: [1] We propose a framework for identifying types of causative mechanisms of floods. The types are long-rain floods, short-rain floods, flash floods, rain-on-snow floods, and snowmelt floods. We adopt a catchment perspective, i.e., the focus is on the catchment state and the atmospheric inputs rather than on atmospheric circulation patterns. We use a combination of a number of process indicators, including the timing of the floods, storm duration, rainfall depths, snowmelt, catchment state, runoff response dynamics, and spatial coherence. On the basis of these indicators and diagnostic regional plots we identify the process types of 11,518 maximum annual flood peaks in 490 Austrian catchments. Forty-three percent of the flood peaks are long-rain floods, only 3% are snowmelt floods, and the relative contribution of the types changes with the flood magnitude. There are pronounced spatial patterns in the frequency of flood type occurrence. For example, rain-on-snow floods most commonly occur in northern Austria. Runoff coefficients tend to increase with rainfall depth for long-rain floods but are less dependent of rainfall depth and exhibit much larger scatter for flash floods. All types exhibit seasonal patterns, both in terms of flood magnitudes and catchment altitudes of flood occurrence. The coefficient of variation (CV) of the flood samples stratified by process type decreases with catchment area for most process types with the exception of flash floods for which CV increases with catchment area.

328 citations

Journal ArticleDOI
TL;DR: In this paper, a version of the Fundamental Theorem of asset pricing, which applies to Kabanov's approach to foreign exchange markets under transaction costs, is shown to be robust with respect to small changes of the bid ask spreads of Sigma_t_t=0^T.
Abstract: We prove a version of the Fundamental Theorem of Asset Pricing, which applies to Kabanov's approach to foreign exchange markets under transaction costs. The financial market is modelled by a d x d matrix-valued stochastic process Sigma_t_t=0^T specifying the mutual bid and ask prices between d assets. We introduce the notion of ``robust no arbitrage", which is a version of the no arbitrage concept, robust with respect to small changes of the bid ask spreads of Sigma_t_t=0^T. Dually, we interpret a concept used by Kabanov and his co-authors as "strictly consistent price systems". We show that this concept extends the notion of equivalent martingale measures, playing a well-known role in the frictionless case, to the present setting of bid-ask processes Sigma_t_t=0^T. The main theorem states that the bid-ask process Sigma_t_t=0^T satisfies the robust no arbitrage condition if it admits a strictly consistent pricing system. This result extends the theorems of Harrison-Pliska and Dalang-Morton-Willinger to the present setting, and also generalizes previous results obtained by Kabanov, Rasonyi and Stricker. An example of a 5-times-5-dimensional process Sigma_t_t=0^2 shows that, in this theorem, the robust no arbitrage condition cannot be replaced by the so-called strict no arbitrage condition, thus answering negatively a question raised by Kabanov, Rasonyi and Stricker. (author's abstract)

327 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a new approach whereby the mutual interactions and continuous feedbacks between floods and societies are explicitly accounted for and showed an application of this approach by using a socio-hydrological model to simulate the behavior of two main prototypes of societies.
Abstract: In flood risk assessment, there remains a lack of analytical frameworks capturing the dynamics emerging from two-way feedbacks between physical and social processes, such as adaptation and levee effect. The former, “adaptation effect”, relates to the observation that the occurrence of more frequent flooding is often associated with decreasing vulnerability. The latter, “levee effect”, relates to the observation that the non-occurrence of frequent flooding (possibly caused by flood protection structures, e.g. levees) is often associated to increasing vulnerability. As current analytical frameworks do not capture these dynamics, projections of future flood risk are not realistic. In this paper, we develop a new approach whereby the mutual interactions and continuous feedbacks between floods and societies are explicitly accounted for. Moreover, we show an application of this approach by using a socio-hydrological model to simulate the behavior of two main prototypes of societies: green societies, which cope with flooding by resettling out of flood-prone areas; and technological societies, which deal with flooding also by building levees or dikes. This application shows that the proposed approach is able to capture and explain the aforementioned dynamics (i.e. adaptation and levee effect) and therefore contribute to a better understanding of changes in flood risk, within an iterative process of theory development and empirical research.

326 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,527
20202,811
20192,846
20182,650