scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Cloud computing. The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In just the past five years, the field of Earth observation has progressed beyond the offerings of conventional space agency based platforms to include a plethora of sensing opportunities afforded by CubeSats, Unmanned Aerial Vehicles, and smartphone technologies that are being embraced by both for-profit companies and individual researchers.
Abstract: In just the past five years, the field of Earth observation has progressed beyond the offerings of conventional space agency based platforms to include a plethora of sensing opportunities afforded by CubeSats, Unmanned Aerial Vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically on the order of one billion dollars per satellite and with concept-to-launch timelines on the order of two decades (for new missions). More recently, the proliferation of smartphones has helped to miniaturise sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist five years ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of the cost of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-meter resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen-scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the Internet of Things as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilise and exploit these new observing systems to enhance our understanding of the Earth and its linked processes.

319 citations

Proceedings ArticleDOI
11 Sep 2014
TL;DR: This paper presents ANDRUBIS, a fully automated, publicly available and comprehensive analysis system for Android apps that combines static analysis with dynamic analysis on both Dalvik VM and system level, as well as several stimulation techniques to increase code coverage.
Abstract: Android is the most popular smartphone operating system with a market share of 80%, but as a consequence, also the platform most targeted by malware. To deal with the increasing number of malicious Android apps in the wild, malware analysts typically rely on analysis tools to extract characteristic information about an app in an automated fashion. While the importance of such tools has been addressed by the research community, the resulting prototypes remain limited in terms of analysis capabilities and availability. In this paper we present ANDRUBIS, a fully automated, publicly available and comprehensive analysis system for Android apps. ANDRUBIS combines static analysis with dynamic analysis on both Dalvik VM and system level, as well as several stimulation techniques to increase code coverage. With ANDRUBIS, we collected a dataset of over 1,000,000 Android apps, including 40% malicious apps. This dataset allows us to discuss trends in malware behavior observed from apps dating back as far as 2010, as well as to present insights gained from operating ANDRUBIS as a publicly available service for the past two years.

318 citations

Journal ArticleDOI
TL;DR: From the frontiers of research on ice dynamics in its broadest sense, the authors surveys the structures of ice, the patterns or morphologies it may assume, and the physical and chemical processes in which it is involved.
Abstract: From the frontiers of research on ice dynamics in its broadest sense, this review surveys the structures of ice, the patterns or morphologies it may assume, and the physical and chemical processes in which it is involved. Open questions in the various fields of ice research in nature are highlighted, ranging from terrestrial and oceanic ice on Earth, to ice in the atmosphere, to ice on other Solar System bodies and in interstellar space.

318 citations

Journal ArticleDOI
TL;DR: The projector augmented wave (PAW) method as mentioned in this paper is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions, which extends and combines the traditions of existing augmented wave methods and the pseudopotential approach.
Abstract: A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.

318 citations

Journal ArticleDOI
01 Jan 2012
TL;DR: SWI-Prolog as discussed by the authors is a Prolog system for building research prototypes, primarily for knowledge-intensive and interactive systems, developed as a community project and used as a glue between foreign resources.
Abstract: SWI-Prolog is neither a commercial Prolog system nor a purely academic enterprise, but increasingly a community project. The core system has been shaped to its current form while being used as a tool for building research prototypes, primarily for knowledge-intensive and interactive systems. Community contributions have added several interfaces and the constraint (CLP) libraries. Commercial involvement has created the initial garbage collector, added several interfaces and two development tools: PlDoc (a literate programming documentation system) and PlUnit (a unit testing environment). In this article, we present SWI-Prolog as an integrating tool, supporting a wide range of ideas developed in the Prolog community and acting as glue between foreign resources. This article itself is the glue between technical articles on SWI-Prolog, providing context and experience in applying them over a longer period.

317 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,527
20202,811
20192,846
20182,650