scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Context (language use). The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, Tran and Blaha proposed a local density approximation (MBJLDA) method for the description of the fundamental band gaps in III-V semiconductors.
Abstract: The band structures and effective masses of III-V semiconductors (InP, InAs, InSb, GaAs, and GaSb) are calculated using the $GW$ method, the Heyd, Scuseria, and Ernzerhof hybrid functional, and modified Becke-Johnson combined with the local-density approximation (MBJLDA)---a local potential optimized for the description of the fundamental band gaps [F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)]. We find that MBJLDA yields an excellent description of the band gaps at high-symmetry points, on par with the hybrid functional and $GW$. However, the effective masses are generally overestimated by $20--30\text{ }\mathrm{%}$ using the MBJLDA local multiplicative potential. We believe this to be related to incorrect nearest-neighbor hopping elements, which are little affected by the choice of the local potential. Despite these shortcomings, the MBJLDA method might be a suitable approach for predicting or interpolating the full band dispersion, if only limited experimental data are available. Furthermore, the method is applicable to systems containing several thousand atoms where accurate quasiparticle methods are not applicable.

280 citations

Journal ArticleDOI
TL;DR: This work proposes representing spanning trees in EAs for network design problems directly as sets of their edges and describes initialization, recombination, and mutation operators for this representation, and demonstrates the usefulness of the edge-set encoding in an EA for the NP-hard degree-constrained minimum spanning-tree problem.
Abstract: The fundamental design choices in an evolutionary algorithm (EA) are its representation of candidate solutions and the operators that will act on that representation. We propose representing spanning trees in EAs for network design problems directly as sets of their edges and we describe initialization, recombination, and mutation operators for this representation. The operators offer locality, heritability, and computational efficiency. Initialization and recombination depend on an underlying random spanning-tree algorithm. Three choices for this algorithm, based on the minimum spanning-tree algorithms of Prim and Kruskal and on random walks, respectively, are examined analytically and empirically. We demonstrate the usefulness of the edge-set encoding in an EA for the NP-hard degree-constrained minimum spanning-tree problem. The algorithm's operators are easily extended to generate only feasible spanning trees and to incorporate local, problem-specific heuristics. Comparisons of this algorithm to others that encode candidate spanning trees via the Blob Code, with network random keys, and as strings of weights indicate the superiority of the edge-set encoding, particularly on larger instances.

279 citations

Journal ArticleDOI
TL;DR: In this article, the performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at root s = 7 TeV energy is studied.
Abstract: The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at root s = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions delivered by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirements.

279 citations

Journal ArticleDOI
TL;DR: The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics in the presence of strong laser fields is introduced and a comprehensive description of the method is given in this article.
Abstract: The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics in the presence of strong laser fields is introduced and a comprehensive description of the method is given. Total ionization and electron spectra for the ground and first excited ionic channels are calculated for one-dimensional model systems with up to six active electrons. Strong correlation effects are found in the shape of photoelectron peaks and the dependence of ionization on molecule size.

279 citations

Journal ArticleDOI
TL;DR: This work proposes a sparsity-enhancing basis expansion and a method for optimizing the basis with or without prior statistical information about the channel, and presents an alternative CS-based channel estimator, which is capable of estimating the off-diagonal channel coefficients characterizing intersymbol and intercarrier interference (ISI/ICI).
Abstract: We consider the application of compressed sensing (CS) to the estimation of doubly selective channels within pulse-shaping multicarrier systems (which include orthogonal frequency-division multiplexing (OFDM) systems as a special case). By exploiting sparsity in the delay-Doppler domain, CS-based channel estimation allows for an increase in spectral efficiency through a reduction of the number of pilot symbols. For combating leakage effects that limit the delay-Doppler sparsity, we propose a sparsity-enhancing basis expansion and a method for optimizing the basis with or without prior statistical information about the channel. We also present an alternative CS-based channel estimator for (potentially) strongly time-frequency dispersive channels, which is capable of estimating the ?off-diagonal? channel coefficients characterizing intersymbol and intercarrier interference (ISI/ICI). For this estimator, we propose a basis construction combining Fourier (exponential) and prolate spheroidal sequences. Simulation results assess the performance gains achieved by the proposed sparsity-enhancing processing techniques and by explicit estimation of ISI/ICI channel coefficients.

279 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,530
20202,811
20192,846
20182,650