scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Cloud computing. The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Journal ArticleDOI
01 Sep 1997
TL;DR: The everyday tool handling experience of working with pen and notebooks is extended to create a three dimensional two‐handed interface, that supports easy‐to‐understand manipulation tasks in augmented and virtual environments.
Abstract: This paper describes the introduction of a new interaction paradigm to augmented reality applications. The everyday tool handling experience of working with pen and notebooks is extended to create a three dimensional two-handed interface, that supports easy-to-understand manipulation tasks in augmented and virtual environments. In the design step we take advantage from the freedom, given by our very low demands on hardware and augment form and functionality to this device. On the basis of examples from object manipulation, augmented research environments and scientific visualization we show the generality of applicability. Although being in the first stages implementation, we consider the wide spectrum of suitability for different purposes.

272 citations

Journal ArticleDOI
TL;DR: A geometric criterion is proposed for a transition to occur between these two regimes of quantum Zeno effect, where the decay can be accelerated or slowed down, depending on the features of the interaction Hamiltonian.
Abstract: The temporal evolution of an unstable quantum mechanical system undergoing repeated measurements is investigated. In general, by changing the time interval between successive measurements, the decay can be accelerated (inverse quantum Zeno effect) or slowed down (quantum Zeno effect), depending on the features of the interaction Hamiltonian. A geometric criterion is proposed for a transition to occur between these two regimes.

271 citations

Journal ArticleDOI
01 Jan 2004-Nature
TL;DR: The study shows that atomic control of the interfacial structure by altering the chemical environment can dramatically improve the electronic properties of the interface to meet technological requirements.
Abstract: The ability of the semiconductor industry to continue scaling microelectronic devices to ever smaller dimensions (a trend known as Moore's Law) is limited by quantum mechanical effects: as the thickness of conventional silicon dioxide (SiO(2)) gate insulators is reduced to just a few atomic layers, electrons can tunnel directly through the films. Continued device scaling will therefore probably require the replacement of the insulator with high-dielectric-constant (high-k) oxides, to increase its thickness, thus preventing tunnelling currents while retaining the electronic properties of an ultrathin SiO(2) film. Ultimately, such insulators will require an atomically defined interface with silicon without an interfacial SiO(2) layer for optimal performance. Following the first reports of epitaxial growth of AO and ABO(3) compounds on silicon, the formation of an atomically abrupt crystalline interface between strontium titanate and silicon was demonstrated. However, the atomic structure proposed for this interface is questionable because it requires silicon atoms that have coordinations rarely found elsewhere in nature. Here we describe first-principles calculations of the formation of the interface between silicon and strontium titanate and its atomic structure. Our study shows that atomic control of the interfacial structure by altering the chemical environment can dramatically improve the electronic properties of the interface to meet technological requirements. The interface structure and its chemistry may provide guidance for the selection process of other high-k gate oxides and for controlling their growth.

271 citations

Journal ArticleDOI
E. Abbas, Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3  +1019 moreInstitutions (91)
TL;DR: The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE and is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction as mentioned in this paper.
Abstract: ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton-proton, proton-nucleus and nucleus-nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger source, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus-nucleus collisions. After describing the VZERO system, this publication presents its performance over more than four years of operation at the LHC.

271 citations

Journal ArticleDOI
TL;DR: It is concluded that T. reesei Cre1 is the functional homologue of Aspergillus CreA and that it binds to its target sequence probably as a protein complex.

270 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,527
20202,811
20192,846
20182,650