scispace - formally typeset
Search or ask a question
Institution

Vikram Sarabhai Space Centre

FacilityThiruvananthapuram, India
About: Vikram Sarabhai Space Centre is a facility organization based out in Thiruvananthapuram, India. It is known for research contribution in the topics: Aerosol & Ultimate tensile strength. The organization has 2092 authors who have published 3058 publications receiving 47975 citations. The organization is also known as: VSSC.


Papers
More filters
Journal ArticleDOI
TL;DR: Near-surface atmospheric aerosols collected from a tropical coastal location in south-west peninsular Indian region for a duration of 6 years (2012-18) were analysed for carbonaceous aerosol components, the less studied aerosol species, and an improved chemical composition model is presented.

32 citations

Journal ArticleDOI
TL;DR: In this article, the thermal postbuckling behavior of isotropic circular plates has been studied through a simple finite element formulation and the accuracy of the solution by finite element method is established through a solution by Rayleigh-Ritz method for simply-supported circular plates.

32 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral absorption coefficients (αabs) depicted, in general, a flatter distribution (mostly flatter distributions) and the local atmospheric boundary layer influence in summer was further modulated by the long-range transported aerosols from the eastern locations of Ooty.
Abstract: . Aerosol black carbon (BC) mass concentrations were continuously monitored over a period of 2 years (April 2010 to May 2012) from a high-altitude location Ooty in the Nilgiris Mountain range in southern India to characterize the distinct nature of absorbing aerosols and their seasonality. Despite being remote and sparsely inhabited, BC concentrations showed significant seasonality with higher values (~ 0.96 ± 0.35 μg m−3) in summer (March to May), attributed to increased vertical transport of effluents in the upwind valley regions, which might have been confined to the surrounding valley regions within the very shallow winter boundary layer. The local atmospheric boundary layer (ABL) influence in summer was further modulated by the long-range transported aerosols from the eastern locations of Ooty. During monsoon (June–August), the concentrations were far reduced (~ 0.23 ± 0.06 μg m−3) due to intense precipitation. Diurnal variations were found conspicuous mainly during summer season associated with local ABL. The spectral absorption coefficients (αabs) depicted, in general, flatter distribution (mostly

32 citations

Journal ArticleDOI
TL;DR: This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.
Abstract: The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ(13)C and δ(15)N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. -24.0‰), mostly originated from biomass burning of C4 plants. On the contrary, the aerosols in summer showed smaller δ(13)C values (-26.0‰), indicating that they are originated from vascular plants (mostly of C3 plants). The secondary ions (i.e., SO4 (2-), NH4 (+), and NO3 (-)) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.

32 citations

Journal ArticleDOI
TL;DR: In this paper, the optical and physical properties of columnar and near-surface aerosols were carried out from Manora Peak, Nainital (a sparsely inhabited, high altitude location, ∼2 km above mean sea level, in the Himalayas), during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP).
Abstract: Collocated measurements of the optical and physical properties of columnar and near-surface aerosols were carried out from Manora Peak, Nainital (a sparsely inhabited, high altitude location, ∼2 km above mean sea level, in the Himalayas), during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP). Under this, observational data of spectral aerosol optical depths (AOD), mass concentration of aerosol black carbon (MB), mass concentration (MT) and number concentration (Nt) of composite (total) aerosols near the surface and meteorological parameters were collected during the period February 15 to April 30, 2006. Though very low (<0.1 at 500 nm) AODs were observed during clear days, as much as a four-fold increase was seen on hazy days. The Angstrom exponent (α), deduced from the spectral AODs, revealed high values during clear days, while on hazy days α was low; with an overall mean value of 0.69 ± 0.06 for the campaign period. BC mass concentration varied between 0.36 and 2.87 μg m−3 and contributed in the range 0.7 to 1.8% to the total aerosol mass. Total aerosol number concentration and BC mass concentration showed diurnal variation with a midnight and early morning minimum and a late afternoon maximum; a pattern quite opposite to that seen in low altitude stations. These are attributed to the dynamics of the atmospheric boundary layer.

32 citations


Authors

Showing all 2111 results

NameH-indexPapersCitations
M. Santosh103134449846
Sabu Thomas102155451366
S. Suresh Babu7049817113
K. Krishna Moorthy542639749
Sathianeson Satheesh5317211099
M. Y. Hussaini4920716794
J.R. Banerjee441465620
C. P. Reghunadhan Nair371814825
K. N. Ninan361594156
Anil Bhardwaj352304527
Ivatury S. Raju331216626
Venkata Sai Kiran Chakravadhanula321023011
P.K. Sinha321182918
J.-P. St.-Maurice311133446
Subramaniam Gopalakrishnan281232951
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

85% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

84% related

Langley Research Center
37.6K papers, 821.6K citations

84% related

Indian Institute of Science
62.4K papers, 1.2M citations

82% related

Ames Research Center
35.8K papers, 1.3M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
202230
2021186
2020160
2019149
2018136