scispace - formally typeset
Search or ask a question
Institution

Vikram Sarabhai Space Centre

FacilityThiruvananthapuram, India
About: Vikram Sarabhai Space Centre is a facility organization based out in Thiruvananthapuram, India. It is known for research contribution in the topics: Aerosol & Ultimate tensile strength. The organization has 2092 authors who have published 3058 publications receiving 47975 citations. The organization is also known as: VSSC.


Papers
More filters
Journal ArticleDOI
TL;DR: An account of the main sources of energetic particle radiation in interplanetary space (Galactic Cosmic Radiation and Solar Energetic Particles) and career dose limits presently utilized by NASA to mitigate against the cancer and non-cancer effects potentially incurred by astronauts due to irradiation by these components are presented as mentioned in this paper.

21 citations

Journal ArticleDOI
TL;DR: In this article, a stochastic finite element based methodology is developed for the uncertainty quantification and reliability analysis of laminated CFRP plates with spatially varying non-Gaussian random inhomogeneities.

21 citations

Journal ArticleDOI
TL;DR: In this article, a regional climate model coupled with a community land model having snow, ice and aerosol radiation module was used to investigate the effect of aerosol-induced snow darkening on the direct and indirect radiative forcing of aerosols over the Himalayan cryosphere.
Abstract: Regional heterogeneity in direct and snow albedo forcing of aerosols over the Himalayan cryosphere was investigated using a regional climate model coupled with the community land model having snow, ice and aerosol radiation module. Deposition of absorbing aerosols like dust (natural) and black carbon (BC) (anthropogenic) decreases the snow albedo (snow darkening) over the Himalayas. Western Himalayas experiences a large reduction in the snow albedo (0.037) despite having lower BC mass concentration compared to central (0.014) and eastern (0.005) Himalayas. The contribution of BC and dust to the snow albedo reduction is comparable over the western and eastern Himalayas. The inclusion of aerosol-induced snow darkening in to the model reduces its bias with respect to the satellite derived surface albedo by 59%, 53% and 35% over western, central and eastern Himalayas respectively during the spring season. Since surface albedo decides the sign and magnitude of aerosol direct radiative forcing, aerosol induced snow darkening significantly affects the direct radiative effects of aerosols. Hence, the aerosol-induced decrease in snow albedo causes an early reversal in the sign of aerosol direct radiative forcing at the top of the atmosphere from warming to cooling over the western and central Himalayas, which can have implications in the radiation balance and water security over the region.

21 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the circulation dynamics of an event marked by the formation of an aerosol cluster off the coast of Maharashtra on April 22, 2006, its southward migration along the Indian west coast with a mean speed of ~200 km/day and its final dissipation after reaching the end of the peninsula by April 28, 2006 as revealed by MODIS (Moderate Resolution Imaging Spectroradiometer) against the pre-monsoon conditions of April 2006.
Abstract: The circulation dynamics of an event marked by the formation of an aerosol cluster off the coast of Maharashtra on April 22, 2006, its southward migration along the Indian west coast with a mean speed of ~200 km/day and its final dissipation after reaching the end of the peninsula by April 28, 2006 as revealed by MODIS (Moderate Resolution Imaging Spectroradiometer) against the pre-monsoon conditions of April 2006 are examined in this study. The maximum aerosol concentration in the cluster was found getting confined to lower and lower altitudes during its southward movement. The NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis wind field indicates that the atmospheric circulation, especially the horizontal wind convergence is the major factor that guides the formation and the dynamics of the cluster. Fine mode fraction from MODIS suggests that the cluster mainly consists of coarse dust particles. The regional climate model, RegCM3 with an efficient dust generation module simulates the formation and movement of the cluster appreciably well. The simulations which also exhibit the altitudinally descending nature of the cluster during its southward movement confirm the mechanism which governs the cluster dynamics suggested based on MODIS and NCEP/NCAR reanalysis data.

21 citations


Authors

Showing all 2111 results

NameH-indexPapersCitations
M. Santosh103134449846
Sabu Thomas102155451366
S. Suresh Babu7049817113
K. Krishna Moorthy542639749
Sathianeson Satheesh5317211099
M. Y. Hussaini4920716794
J.R. Banerjee441465620
C. P. Reghunadhan Nair371814825
K. N. Ninan361594156
Anil Bhardwaj352304527
Ivatury S. Raju331216626
Venkata Sai Kiran Chakravadhanula321023011
P.K. Sinha321182918
J.-P. St.-Maurice311133446
Subramaniam Gopalakrishnan281232951
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

85% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

84% related

Langley Research Center
37.6K papers, 821.6K citations

84% related

Indian Institute of Science
62.4K papers, 1.2M citations

82% related

Ames Research Center
35.8K papers, 1.3M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
202230
2021186
2020160
2019149
2018136