scispace - formally typeset
Search or ask a question
Institution

Vikram Sarabhai Space Centre

FacilityThiruvananthapuram, India
About: Vikram Sarabhai Space Centre is a facility organization based out in Thiruvananthapuram, India. It is known for research contribution in the topics: Aerosol & Ultimate tensile strength. The organization has 2092 authors who have published 3058 publications receiving 47975 citations. The organization is also known as: VSSC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the net downward shortwave radiation (NDSWR) values derived from satellites (Modern Era Retrospective-analysis for Research and Applications, MERRA 2D) in order to examine the multi-decadal variations in the incoming solar radiation over south Asia for the period of 1979-2004.

60 citations

Journal ArticleDOI
TL;DR: The results of the detailed analyses of two disturbance events are presented in this article, showing that the global scale current system associated with a bay-type disturbance undergoes large changes even within the duration of the disturbance.

60 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the spatio-temporal and spectral variations during the period of ICARB (March to May 2006) and found that the AOD and the derived Angstrom parameters showed considerable variations across India during the above period.
Abstract: Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Angstrom parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Angstrom coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Angstrom exponent (α) remained significantly lower (∼1) over the Arabian Sea compared to Bay of Bengal (BoB) (∼1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.

60 citations

Journal ArticleDOI
TL;DR: In this article, bismaleimide-triazine network polymers were derived for decreasing tensile properties and improving both the flexural strength and fracture toughness of the cyanate ester-rich neat resin blends.
Abstract: Blends of varying composition of a bisphenol A based cyanate ester—viz., 2,2-bis-(4-cyanatophenyl) propane (BACY)—and a bisphenol A based bismaleimide—viz., 2,2-bis[4-(4-maleimido phenoxy) phenyl] propane (BMIP)—were cured together in a sequential manner to derive bismaleimide–triazine network polymers. Enhancing the bismaleimide content was conducive for decreasing the tensile properties and improving both the flexural strength and fracture toughness of the cyanate ester-rich neat resin blends. Although DMA analyses of the cured blend indicated a homogeneous network for the cyanate ester dominated compositions, microphase separation occurred on enriching the blend with the bismaleimide. Addition of bismaleimide did not result in any enhancement in Tg of the blend. Interlinking of the two networks and enhancing crosslink density through coreaction with 4-cyanatophenyl maleimide impaired both the mechanical and fracture properties of the interpenetrating polymer network (IPN), although the Tg showed an improvement. Presence of the bismaleimide was conducive for enhancing the mechanical properties of the composites of the cyanate ester rich blend, whereas a higher concentration of it led to poorer mechanical properties due to the formation of a brittle interphase. The IPNs showed reduced moisture absorption and low dielectric constant and dissipation factor, the latter properties being independent of the blend composition. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2737–2746, 1999

60 citations

Journal ArticleDOI
TL;DR: In this paper, the diurnal pattern of total electron content (TEC) at a chain of equatorial to low-latitude stations shows strong positive ionospheric storm on 15 May.
Abstract: [1] Using multi-instrumental and multistation data, we present low-latitude ionospheric-thermospheric behavior during the geomagnetic storm of 15 May 2005. The diurnal pattern of total electron content (TEC) at a chain of equatorial to low-latitude stations shows strong positive ionospheric storm on 15 May. Latitudinal variation of TEC shows development of strong equatorial ionization anomaly (EIA) on the same day. Evidence, in terms of equatorial electrojet (EEJ) and magnetogram signatures, is presented for the prompt penetration of interplanetary electric field (IEF) as the cause of the positive ionospheric storm. Consequent to the storm time circulation resulting from the extra energy deposition via Joule heating over high latitudes, compositional changes occur in the global thermosphere. TEC enhancements on 16 May are attributed to enhancement of atomic oxygen at equatorial and low latitudes and the negative ionospheric storm on 17 May observed beyond certain low latitudes is explained in terms of enhancement of molecular species because of the storm time neutral composition changes. Strong ESF plume structures on range time intensity (RTI) map and L-band scintillation and TEC depletions in GPS measurements are observed in the longitude sectors where the local time of sudden storm commencement (SSC) falls after the post sunset hours. The ionospheric zonal electric fields are altered by the combined effects of eastward disturbance dynamo electric fields and direct prompt penetration of eastward electric fields associated with the northward turning of interplanetary magnetic field (IMF) Bz leading to subsequent development of ESF after midnight.

59 citations


Authors

Showing all 2111 results

NameH-indexPapersCitations
M. Santosh103134449846
Sabu Thomas102155451366
S. Suresh Babu7049817113
K. Krishna Moorthy542639749
Sathianeson Satheesh5317211099
M. Y. Hussaini4920716794
J.R. Banerjee441465620
C. P. Reghunadhan Nair371814825
K. N. Ninan361594156
Anil Bhardwaj352304527
Ivatury S. Raju331216626
Venkata Sai Kiran Chakravadhanula321023011
P.K. Sinha321182918
J.-P. St.-Maurice311133446
Subramaniam Gopalakrishnan281232951
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

85% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

84% related

Langley Research Center
37.6K papers, 821.6K citations

84% related

Indian Institute of Science
62.4K papers, 1.2M citations

82% related

Ames Research Center
35.8K papers, 1.3M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
202230
2021186
2020160
2019149
2018136