scispace - formally typeset
Search or ask a question
Institution

Virginia Commonwealth University

EducationRichmond, Virginia, United States
About: Virginia Commonwealth University is a education organization based out in Richmond, Virginia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 23822 authors who have published 49587 publications receiving 1787046 citations. The organization is also known as: VCU.


Papers
More filters
Journal ArticleDOI
TL;DR: Assessment strategies and match interventions are discussed that might routinely optimize patient-physician encounters toward more positive outcomes and methodological guidelines are suggested that can improve future preference-match studies of the patient-Physician interaction.

491 citations

Journal ArticleDOI
TL;DR: The International Molecular Exchange consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website.
Abstract: The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices.

490 citations

Journal ArticleDOI
09 Nov 2010-Polymers
TL;DR: The process of electrospinning is presented and the use of natural polymers in the creation of bioactive ECM analogues in tissue engineering is described, due in part to the enhanced bioactivity afforded by materials normally found within the human body.
Abstract: Natural polymers such as collagens, elastin, and fibrinogen make up much of the body’s native extracellular matrix (ECM). This ECM provides structure and mechanical integrity to tissues, as well as communicating with the cellular components it supports to help facilitate and regulate daily cellular processes and wound healing. An ideal tissue engineering scaffold would not only replicate the structure of this ECM, but would also replicate the many functions that the ECM performs. In the past decade, the process of electrospinning has proven effective in creating non-woven ECM analogue scaffolds of micro to nanoscale diameter fibers from an array of synthetic and natural polymers. The ability of this fabrication technique to utilize the aforementioned natural polymers to create tissue engineering scaffolds has yielded promising results, both in vitro and in vivo , due in part to the enhanced bioactivity afforded by materials normally found within the human body. This review will present the process of electrospinning and describe the use of natural polymers in the creation of bioactive ECM analogues in tissue engineering.

487 citations

Journal ArticleDOI
TL;DR: It is suggested that the oxidation state of external melanin may be regulated by external Fe(II), and an independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme is the oxidation of Fe( II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H(2)O(2).
Abstract: Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning.

487 citations


Authors

Showing all 24085 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Carlo M. Croce1981135189007
Nicholas G. Martin1921770161952
Michael Rutter188676151592
Kenneth S. Kendler1771327142251
Bernhard O. Palsson14783185051
Thomas J. Smith1401775113919
Ming T. Tsuang14088573865
Patrick F. Sullivan13359492298
Martin B. Keller13154165069
Michael E. Thase13192375995
Benjamin F. Cravatt13166661932
Jian Zhou128300791402
Rena R. Wing12864967360
Linda R. Watkins12751956454
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

97% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

97% related

Duke University
200.3K papers, 10.7M citations

95% related

University of Pennsylvania
257.6K papers, 14.1M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202395
2022395
20213,658
20203,437
20193,039
20182,758