scispace - formally typeset
Search or ask a question

Showing papers by "Virginia Tech published in 2020"


Journal ArticleDOI
TL;DR: This article identifies the primary drivers of 6G systems, in terms of applications and accompanying technological trends, and identifies the enabling technologies for the introduced 6G services and outlines a comprehensive research agenda that leverages those technologies.
Abstract: The ongoing deployment of 5G cellular systems is continuously exposing the inherent limitations of this system, compared to its original premise as an enabler for Internet of Everything applications. These 5G drawbacks are spurring worldwide activities focused on defining the next-generation 6G wireless system that can truly integrate far-reaching applications ranging from autonomous systems to extended reality. Despite recent 6G initiatives (one example is the 6Genesis project in Finland), the fundamental architectural and performance components of 6G remain largely undefined. In this article, we present a holistic, forward-looking vision that defines the tenets of a 6G system. We opine that 6G will not be a mere exploration of more spectrum at high-frequency bands, but it will rather be a convergence of upcoming technological trends driven by exciting, underlying services. In this regard, we first identify the primary drivers of 6G systems, in terms of applications and accompanying technological trends. Then, we propose a new set of service classes and expose their target 6G performance requirements. We then identify the enabling technologies for the introduced 6G services and outline a comprehensive research agenda that leverages those technologies. We conclude by providing concrete recommendations for the roadmap toward 6G. Ultimately, the intent of this article is to serve as a basis for stimulating more out-of-the-box research around 6G.

2,416 citations


Journal ArticleDOI
TL;DR: It is argued that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors, and that the use of engineering controls in public buildings would be an additional important measure globally to reduce the likelihood of transmission.

924 citations


Journal ArticleDOI
04 May 2020-Nature
TL;DR: A model of the effects of different non-pharmaceutical interventions on the spread of COVID-19 in China suggests that a strategy involving the rapid implementation of a combination of interventions is most effective.
Abstract: On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic1. The strategies based on non-pharmaceutical interventions that were used to contain the outbreak in China appear to be effective2, but quantitative research is still needed to assess the efficacy of non-pharmaceutical interventions and their timings3. Here, using epidemiological data on COVID-19 and anonymized data on human movement4,5, we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimate that there were a total of 114,325 cases of COVID-19 (interquartile range 76,776–164,576) in mainland China as of 29 February 2020. Without non-pharmaceutical interventions, we predict that the number of cases would have been 67-fold higher (interquartile range 44–94-fold) by 29 February 2020, and we find that the effectiveness of different interventions varied. We estimate that early detection and isolation of cases prevented more infections than did travel restrictions and contact reductions, but that a combination of non-pharmaceutical interventions achieved the strongest and most rapid effect. According to our model, the lifting of travel restrictions from 17 February 2020 does not lead to an increase in cases across China if social distancing interventions can be maintained, even at a limited level of an on average 25% reduction in contact between individuals that continues until late April. These findings improve our understanding of the effects of non-pharmaceutical interventions on COVID-19, and will inform response efforts across the world. A model of the effects of different non-pharmaceutical interventions on the spread of COVID-19 in China suggests that a strategy involving the rapid implementation of a combination of interventions is most effective.

878 citations


Journal ArticleDOI
18 Sep 2020-Science
TL;DR: Assessment of three broad management strategies, plastic waste reduction, waste management, and environmental recovery, at different levels of effort to estimate plastic emissions to 2030 for 173 countries found that 19 to 23 million metric tons, or 11%, of plastic waste generated globally in 2016 entered aquatic ecosystems.
Abstract: Plastic pollution is a planetary threat, affecting nearly every marine and freshwater ecosystem globally. In response, multilevel mitigation strategies are being adopted but with a lack of quantitative assessment of how such strategies reduce plastic emissions. We assessed the impact of three broad management strategies, plastic waste reduction, waste management, and environmental recovery, at different levels of effort to estimate plastic emissions to 2030 for 173 countries. We estimate that 19 to 23 million metric tons, or 11%, of plastic waste generated globally in 2016 entered aquatic ecosystems. Considering the ambitious commitments currently set by governments, annual emissions may reach up to 53 million metric tons per year by 2030. To reduce emissions to a level well below this prediction, extraordinary efforts to transform the global plastics economy are needed.

775 citations


Journal ArticleDOI
TL;DR: This work presents an approach based on disentangled representation for producing diverse outputs without paired training images, and proposes to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and adomain-specific attribute space.
Abstract: Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: (1) the lack of aligned training pairs and (2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Using the disentangled features as inputs greatly reduces mode collapse. To handle unpaired training data, we introduce a novel cross-cycle consistency loss. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks. We validate the effectiveness of our approach through extensive evaluation.

574 citations


Journal ArticleDOI
04 Jun 2020-Nature
TL;DR: The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
Abstract: Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.

551 citations


Journal ArticleDOI
TL;DR: Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance.

406 citations


Journal ArticleDOI
TL;DR: Evidence is provided that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions including nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare.
Abstract: The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect human wellbeing and ecosystem sustainability. Here, combining a global observational study with an experimental microcosm study, we provide evidence that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions. These functions include nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare. Our findings also reveal the context dependency of such relationships and the importance of the connectedness, biodiversity and nature of the globally distributed dominant phylotypes within the soil network in maintaining multiple functions. Moreover, our results suggest that the positive association between plant diversity and multifunctionality across biomes is indirectly driven by soil biodiversity. Together, our results provide insights into the importance of soil biodiversity for maintaining soil functionality locally and across biomes, as well as providing strong support for the inclusion of soil biodiversity in conservation and management programmes.

405 citations


Journal ArticleDOI
TL;DR: A rewrite of the top-level computation driver, and concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of PSI4 well suited to distributed computation of large numbers of independent tasks.
Abstract: PSI4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of PSI4's core functionalities via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSCHEMA data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of PSI4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs.

387 citations


Journal ArticleDOI
TL;DR: A comprehensive review and analysis on the state-of-the-art blockchain consensus protocols is presented in this article, where the authors identify five core components of a blockchain consensus protocol, namely, block proposal, block validation, information propagation, block finalization, and incentive mechanism.
Abstract: Since the inception of Bitcoin, cryptocurrencies and the underlying blockchain technology have attracted an increasing interest from both academia and industry. Among various core components, consensus protocol is the defining technology behind the security and performance of blockchain. From incremental modifications of Nakamoto consensus protocol to innovative alternative consensus mechanisms, many consensus protocols have been proposed to improve the performance of the blockchain network itself or to accommodate other specific application needs. In this survey, we present a comprehensive review and analysis on the state-of-the-art blockchain consensus protocols. To facilitate the discussion of our analysis, we first introduce the key definitions and relevant results in the classic theory of fault tolerance which help to lay the foundation for further discussion. We identify five core components of a blockchain consensus protocol, namely, block proposal, block validation, information propagation, block finalization, and incentive mechanism. A wide spectrum of blockchain consensus protocols are then carefully reviewed accompanied by algorithmic abstractions and vulnerability analyses. The surveyed consensus protocols are analyzed using the five-component framework and compared with respect to different performance metrics. These analyses and comparisons provide us new insights in the fundamental differences of various proposals in terms of their suitable application scenarios, key assumptions, expected fault tolerance, scalability, drawbacks and trade-offs. We believe this survey will provide blockchain developers and researchers a comprehensive view on the state-of-the-art consensus protocols and facilitate the process of designing future protocols.

381 citations


Journal ArticleDOI
TL;DR: The problem of joint power and resource allocation (JPRA) for ultra-reliable low-latency communication (URLLC) in vehicular networks is studied and a novel distributed approach based on federated learning (FL) is proposed to estimate the tail distribution of the queues.
Abstract: In this paper, the problem of joint power and resource allocation (JPRA) for ultra-reliable low-latency communication (URLLC) in vehicular networks is studied. Therein, the network-wide power consumption of vehicular users (VUEs) is minimized subject to high reliability in terms of probabilistic queuing delays. Using extreme value theory (EVT), a new reliability measure is defined to characterize extreme events pertaining to vehicles’ queue lengths exceeding a predefined threshold. To learn these extreme events, assuming they are independently and identically distributed over VUEs, a novel distributed approach based on federated learning (FL) is proposed to estimate the tail distribution of the queue lengths. Considering the communication delays incurred by FL over wireless links, Lyapunov optimization is used to derive the JPRA policies enabling URLLC for each VUE in a distributed manner. The proposed solution is then validated via extensive simulations using a Manhattan mobility model. Simulation results show that FL enables the proposed method to estimate the tail distribution of queues with an accuracy that is close to a centralized solution with up to 79% reductions in the amount of exchanged data. Furthermore, the proposed method yields up to 60% reductions of VUEs with large queue lengths, while reducing the average power consumption by two folds, compared to an average queue-based baseline.

Journal ArticleDOI
TL;DR: Results fail to confirm the null hypothesis of no association between BCG vaccination and COVID-19 mortality, and suggest that BCG could have a protective effect, but public health implications of a plausible BCG cross-protection from severe COVID -19 are discussed.
Abstract: A series of epidemiological explorations has suggested a negative association between national bacillus Calmette-Guerin (BCG) vaccination policy and the prevalence and mortality of coronavirus disease 2019 (COVID-19). However, these comparisons are difficult to validate due to broad differences between countries such as socioeconomic status, demographic structure, rural vs. urban settings, time of arrival of the pandemic, number of diagnostic tests and criteria for testing, and national control strategies to limit the spread of COVID-19. We review evidence for a potential biological basis of BCG cross-protection from severe COVID-19, and refine the epidemiological analysis to mitigate effects of potentially confounding factors (e.g., stage of the COVID-19 epidemic, development, rurality, population density, and age structure). A strong correlation between the BCG index, an estimation of the degree of universal BCG vaccination deployment in a country, and COVID-19 mortality in different socially similar European countries was observed (r 2 = 0.88; P = 8 × 10-7), indicating that every 10% increase in the BCG index was associated with a 10.4% reduction in COVID-19 mortality. Results fail to confirm the null hypothesis of no association between BCG vaccination and COVID-19 mortality, and suggest that BCG could have a protective effect. Nevertheless, the analyses are restricted to coarse-scale signals and should be considered with caution. BCG vaccination clinical trials are required to corroborate the patterns detected here, and to establish causality between BCG vaccination and protection from severe COVID-19. Public health implications of a plausible BCG cross-protection from severe COVID-19 are discussed.

Journal ArticleDOI
TL;DR: A systematic evaluation of state-of-the-art algorithms for inferring gene regulatory networks from single-cell transcriptional data finds heterogeneous performance and suggests recommendations to users.
Abstract: We present a systematic evaluation of state-of-the-art algorithms for inferring gene regulatory networks from single-cell transcriptional data. As the ground truth for assessing accuracy, we use synthetic networks with predictable trajectories, literature-curated Boolean models and diverse transcriptional regulatory networks. We develop a strategy to simulate single-cell transcriptional data from synthetic and Boolean networks that avoids pitfalls of previously used methods. Furthermore, we collect networks from multiple experimental single-cell RNA-seq datasets. We develop an evaluation framework called BEELINE. We find that the area under the precision-recall curve and early precision of the algorithms are moderate. The methods are better in recovering interactions in synthetic networks than Boolean models. The algorithms with the best early precision values for Boolean models also perform well on experimental datasets. Techniques that do not require pseudotime-ordered cells are generally more accurate. Based on these results, we present recommendations to end users. BEELINE will aid the development of gene regulatory network inference algorithms.

Journal ArticleDOI
TL;DR: This viewpoint article argues that the impacts of the novel coronavirus COVID-19 call for transformative e-Tourism research, and presents six pillars to guide scholars in their efforts to transform e- Tourism through their research, including historicity, reflexivity, equity, transparency, plurality, and creativity.
Abstract: This viewpoint article argues that the impacts of the novel coronavirus COVID-19 call for transformative e-Tourism research. We are at a crossroads where one road takes us to e-Tourism as it was before the crisis, whereas the other holds the potential to transform e-Tourism. To realize this potential, e-Tourism research needs to challenge existing paradigms and critically evaluate its ontological and epistemological foundations. In light of the paramount importance to rethink contemporary science, growth, and technology paradigms, we present six pillars to guide scholars in their efforts to transform e-Tourism through their research, including historicity, reflexivity, equity, transparency, plurality, and creativity. We conclude the paper with a call to the e-Tourism research community to embrace transformative research.

Journal ArticleDOI
W. Bruce Banerdt1, Suzanne E. Smrekar1, Don Banfield2, Domenico Giardini3, Matthew P. Golombek1, Catherine L. Johnson4, Catherine L. Johnson5, Philippe Lognonné6, Philippe Lognonné7, Aymeric Spiga7, Aymeric Spiga8, Tilman Spohn9, Clément Perrin6, Simon Stähler3, Daniele Antonangeli8, Sami W. Asmar1, Caroline Beghein10, Caroline Beghein11, Neil Bowles12, Ebru Bozdag13, Peter Chi11, Ulrich R. Christensen14, John Clinton3, Gareth S. Collins15, Ingrid Daubar1, Véronique Dehant16, Véronique Dehant17, Mélanie Drilleau6, Matthew Fillingim18, William M. Folkner1, Raphaël F. Garcia19, James B. Garvin20, John A. Grant21, Matthias Grott9, Jerzy Grygorczuk, Troy L. Hudson1, Jessica C. E. Irving22, Günter Kargl23, Taichi Kawamura6, Sharon Kedar1, Scott D. King24, Brigitte Knapmeyer-Endrun25, Martin Knapmeyer9, Mark T. Lemmon26, Ralph D. Lorenz27, Justin N. Maki1, Ludovic Margerin28, Scott M. McLennan29, Chloé Michaut30, Chloé Michaut7, David Mimoun19, Anna Mittelholz4, Antoine Mocquet31, Paul Morgan13, Nils Mueller9, Naomi Murdoch19, Seiichi Nagihara32, Claire E. Newman, Francis Nimmo33, Mark P. Panning1, W. Thomas Pike15, Ana-Catalina Plesa9, Sebastien Rodriguez6, Sebastien Rodriguez7, José Antonio Rodríguez-Manfredi34, Christopher T. Russell11, Nicholas Schmerr35, Matthew A. Siegler5, Matthew A. Siegler36, Sabine Stanley37, Eléanore Stutzmann6, Nicholas A Teanby38, Jeroen Tromp22, Martin van Driel3, Nicholas H. Warner39, Renee Weber40, Mark A. Wieczorek 
TL;DR: For example, the first ten months of the InSight lander on Mars revealed a planet that is seismically active and provided information about the interior, surface and atmospheric workings of Mars as mentioned in this paper.
Abstract: NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander. Geophysical and meteorological measurements by NASA’s InSight lander on Mars reveal a planet that is seismically active and provide information about the interior, surface and atmospheric workings of Mars.


Posted ContentDOI
18 Jun 2020-medRxiv
TL;DR: It is demonstrated that the risk of infection is modulated by ventilation conditions, occupant density, and duration of shared presence with an infectious individual, and how the risk would vary with several influential factors.
Abstract: During the 2020 COVID-19 pandemic, an outbreak occurred following attendance of a symptomatic index case at a regular weekly rehearsal on 10 March of the Skagit Valley Chorale (SVC) After that rehearsal, 53 members of the SVC among 61 in attendance were confirmed or strongly suspected to have contracted COVID-19 and two died Transmission by the airborne route is likely It is vital to identify features of cases such as this so as to better understand the factors that promote superspreading events Based on a conditional assumption that transmission during this outbreak was by inhalation of respiratory aerosol, we use the available evidence to infer the emission rate of airborne infectious quanta from the primary source We also explore how the risk of infection would vary with several influential factors: the rates of removal of respiratory aerosol by ventilation; deposition onto surfaces; and viral decay The results indicate an emission rate of the order of a thousand quanta per hour (mean [interquartile range] for this event = 970 [680-1190] quanta per hour) and demonstrate that the risk of infection is modulated by ventilation conditions, occupant density, and duration of shared presence with an infectious individual Practical Implications During respiratory disease pandemics, group singing indoors should be discouraged or at a minimum carefully managed as singing can generate large amounts of airborne virus (quanta) if any of the singers is infected Ventilation requirements for spaces that are used for singing (eg, buildings for religious services and rehearsal/performance) should be reconsidered in light of the potential for airborne transmission of infectious diseases Meetings of choirs and other kinds of singing groups during pandemics should only be in spaces that are equipped with a warning system of insufficient ventilation which may be detected with CO2 “traffic light” monitors Systems that combine the functions heating and ventilation (or cooling and ventilation) should be provided with a disclaimer saying “do not shut this system off when people are using the room; turning off the system will also shut down fresh air supply, which can lead to the spread of airborne infections”

Journal ArticleDOI
TL;DR: In this article, the authors model the incentive-based interaction between a global server and participating devices for federated learning via a Stackelberg game to motivate the participation of the devices in the learning process.
Abstract: Recent years have witnessed a rapid proliferation of smart Internet of Things (IoT) devices. IoT devices with intelligence require the use of effective machine learning paradigms. Federated learning can be a promising solution for enabling IoT-based smart applications. In this article, we present the primary design aspects for enabling federated learning at the network edge. We model the incentive- based interaction between a global server and participating devices for federated learning via a Stackelberg game to motivate the participation of the devices in the federated learning process. We present several open research challenges with their possible solutions. Finally, we provide an outlook on future research.

Journal ArticleDOI
TL;DR: An algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video by using a learning-based prior, i.e., a convolutional neural network trained for single-image depth estimation.
Abstract: We present an algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video. We leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video. Unlike the ad-hoc priors in classical reconstruction, we use a learning-based prior, i.e., a convolutional neural network trained for single-image depth estimation. At test time, we fine-tune this network to satisfy the geometric constraints of a particular input video, while retaining its ability to synthesize plausible depth details in parts of the video that are less constrained. We show through quantitative validation that our method achieves higher accuracy and a higher degree of geometric consistency than previous monocular reconstruction methods. Visually, our results appear more stable. Our algorithm is able to handle challenging hand-held captured input videos with a moderate degree of dynamic motion. The improved quality of the reconstruction enables several applications, such as scene reconstruction and advanced video-based visual effects.

Journal ArticleDOI
G. Caria1, Phillip Urquijo1, Iki Adachi2, Iki Adachi3  +228 moreInstitutions (77)
TL;DR: This work constitutes the most precise measurements of R(D) and R (D^{*}) performed to date as well as the first result for R( D) based on a semileptonic tagging method.
Abstract: The experimental results on the ratios of branching fractions $\mathcal{R}(D) = {\cal B}(\bar{B} \to D \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D \ell^- \bar{ u}_{\ell})$ and $\mathcal{R}(D^*) = {\cal B}(\bar{B} \to D^* \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D^* \ell^- \bar{ u}_{\ell})$, where $\ell$ denotes an electron or a muon, show a long-standing discrepancy with the Standard Model predictions, and might hint to a violation of lepton flavor universality. We report a new simultaneous measurement of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$, based on a data sample containing $772 \times 10^6$ $B\bar{B}$ events recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. In this analysis the tag-side $B$ meson is reconstructed in a semileptonic decay mode and the signal-side $\tau$ is reconstructed in a purely leptonic decay. The measured values are $\mathcal{R}(D)= 0.307 \pm 0.037 \pm 0.016$ and $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014$, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the Standard Model predictions within $0.2$, $1.1$ and $0.8$ standard deviations for $\mathcal{R}(D)$, $\mathcal{R}(D^*)$ and their combination, respectively. This work constitutes the most precise measurements of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ performed to date as well as the first result for $\mathcal{R}(D)$ based on a semileptonic tagging method.

Journal ArticleDOI
01 May 2020-Science
TL;DR: An ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere is developed to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.
Abstract: Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a solar physics division of the American Astronomical Society (AAS) Division of Astronomy Division of the University of Washington (U.W.
Abstract: NSFNational Science Foundation (NSF) [AST-1715122]; DIRAC Institute in the Department of Astronomy at the University of Washington; STFC studentshipScience & Technology Facilities Council (STFC) [ST/N504336/1]; STFC grantScience & Technology Facilities Council (STFC) [ST/N000692/1]; Google; NumFocus; Solar Physics Division of the American Astronomical Society; Space program

Journal ArticleDOI
TL;DR: In this paper, an asymptotic analysis of the uplink data rate in an LIS-based large antenna-array system is presented, where the estimated channel on LIS is subject to estimation errors, interference channels are spatially correlated Rician fading channels, and the LIS experiences hardware impairments.
Abstract: The concept of a large intelligent surface (LIS) has recently emerged as a promising wireless communication paradigm that can exploit the entire surface of man-made structures for transmitting and receiving information. An LIS is expected to go beyond massive multiple-input multiple-output (MIMO) system, insofar as the desired channel can be modeled as a perfect line-of-sight. To understand the fundamental performance benefits, it is imperative to analyze its achievable data rate, under practical LIS environments and limitations. In this paper, an asymptotic analysis of the uplink data rate in an LIS-based large antenna-array system is presented. In particular, the asymptotic LIS rate is derived in a practical wireless environment where the estimated channel on LIS is subject to estimation errors, interference channels are spatially correlated Rician fading channels, and the LIS experiences hardware impairments. Moreover, the occurrence of the channel hardening effect is analyzed and the performance bound is asymptotically derived for the considered LIS system. The analytical asymptotic results are then shown to be in close agreement with the exact mutual information as the number of antennas and devices increase without bounds. Moreover, the derived ergodic rates show that hardware impairments, noise, and interference from estimation errors and the non-line-of-sight path become negligible as the number of antennas increases. Simulation results show that an LIS can achieve a performance that is comparable to conventional massive MIMO with improved reliability and a significantly reduced area for antenna deployment.

Journal ArticleDOI
TL;DR: The results highlight that the increase in R/S ratio caused by the changes of sugar allocation, metabolism, and transport under drought stress contributes towards drought resistance of soybean.

Journal ArticleDOI
TL;DR: In this paper, a systematic review of research on environmental education's contributions to conservation and environmental quality outcomes is presented, which highlights productive research-implementation spaces where those environmental education outcomes occur, are measured and are reported.

Journal ArticleDOI
TL;DR: It is argued that deploying AI in fifth generation (5G) and beyond will require surmounting significant technical barriers in terms of robustness, performance, and complexity.
Abstract: Mobile network operators (MNOs) are in the process of overlaying their conventional macro cellular networks with shorter range cells such as outdoor pico cells. The resultant increase in network complexity creates substantial overhead in terms of operating expenses, time, and labor for their planning and management. Artificial intelligence (AI) offers the potential for MNOs to operate their networks in a more organic and cost-efficient manner. We argue that deploying AI in fifth generation (5G) and beyond will require surmounting significant technical barriers in terms of robustness, performance, and complexity. We outline future research directions, identify top five challenges, and present a possible roadmap to realize the vision of AI-enabled cellular networks for Beyond- 5G and sixth generation (6G) networks.


Posted Content
TL;DR: The recent advances of federated learning towards enabling Federated learning-powered IoT applications are presented and a set of metrics such as sparsification, robustness, quantization, scalability, security, and privacy, is delineated in order to rigorously evaluate the recent advances.
Abstract: The Internet of Things (IoT) will be ripe for the deployment of novel machine learning algorithms for both network and application management. However, given the presence of massively distributed and private datasets, it is challenging to use classical centralized learning algorithms in the IoT. To overcome this challenge, federated learning can be a promising solution that enables on-device machine learning without the need to migrate the private end-user data to a central cloud. In federated learning, only learning model updates are transferred between end-devices and the aggregation server. Although federated learning can offer better privacy preservation than centralized machine learning, it has still privacy concerns. In this paper, first, we present the recent advances of federated learning towards enabling federated learning-powered IoT applications. A set of metrics such as sparsification, robustness, quantization, scalability, security, and privacy, is delineated in order to rigorously evaluate the recent advances. Second, we devise a taxonomy for federated learning over IoT networks. Third, we propose two IoT use cases of dispersed federated learning that can offer better privacy preservation than federated learning. Finally, we present several open research challenges with their possible solutions.

Journal ArticleDOI
TL;DR: In this paper, a self-supported heterostructure catalyst in the form of Ni2P-NiSe2, which is obtained by phosphorization of NiSe2 nanosheet arrays grown on the carbon cloth, was reported.
Abstract: Developing earth-abundant transition-metal phosphides electrocatalysts with high activity and good durability toward alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen energy economy. However, their intrinsic activity is limited by the inadequate hydrogen adsorption energy. Herein, we reported a novel self-supported heterostructure catalyst in the form of Ni2P-NiSe2, which is obtained by phosphorization of NiSe2 nanosheet arrays grown on the carbon cloth. The heterostructure catalyst exhibits excellent HER performance in 1 M KOH, only requiring an overpotential of 66 mV at a current density of 10 mA cm−2 with a Tafel slope of 72.6 mV dec-1 and showing excellent long-term durability. The experimental and theoretical calculation results demonstrate the strongly electronic interaction between Ni2P and NiSe2, resulting in the optimized Gibbs free energy of hydrogen and water adsorption. This work concerning the regulation of electronic structure through interface engineering may offer a deep insight to explore superior catalysts.

Journal ArticleDOI
TL;DR: Progress in understanding the reduction of a wide range of C-based substrates, including CO and CO2, is discussed, and remaining challenges in understanding nitrogenase substrate reduction are considered.
Abstract: Nitrogenase is the enzyme that catalyzes biological N2 reduction to NH3. This enzyme achieves an impressive rate enhancement over the uncatalyzed reaction. Given the high demand for N2 fixation to support food and chemical production and the heavy reliance of the industrial Haber-Bosch nitrogen fixation reaction on fossil fuels, there is a strong need to elucidate how nitrogenase achieves this difficult reaction under benign conditions as a means of informing the design of next generation synthetic catalysts. This Review summarizes recent progress in addressing how nitrogenase catalyzes the reduction of an array of substrates. New insights into the mechanism of N2 and proton reduction are first considered. This is followed by a summary of recent gains in understanding the reduction of a number of other nitrogenous compounds not considered to be physiological substrates. Progress in understanding the reduction of a wide range of C-based substrates, including CO and CO2, is also discussed, and remaining challenges in understanding nitrogenase substrate reduction are considered.