scispace - formally typeset
Search or ask a question

Showing papers by "Virginia Tech published in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations


Journal ArticleDOI
Nick Watts1, Markus Amann2, Nigel W. Arnell3, Sonja Ayeb-Karlsson4, Jessica Beagley1, Kristine Belesova5, Maxwell T. Boykoff6, Peter Byass7, Wenjia Cai8, Diarmid Campbell-Lendrum9, Stuart Capstick10, Jonathan Chambers11, Samantha Coleman1, Carole Dalin1, Meaghan Daly12, Niheer Dasandi13, Shouro Dasgupta, Michael Davies1, Claudia Di Napoli3, Paula Dominguez-Salas5, Paul Drummond1, Robert Dubrow14, Kristie L. Ebi15, Matthew J. Eckelman16, Paul Ekins1, Luis E. Escobar17, Lucien Georgeson18, Su Golder19, Delia Grace20, Hilary Graham12, Paul Haggar10, Ian Hamilton1, Stella M. Hartinger21, Jeremy J. Hess15, Shih Che Hsu1, Nick Hughes1, Slava Mikhaylov, Marcia P. Jimenez22, Ilan Kelman1, Harry Kennard1, Gregor Kiesewetter2, Patrick L. Kinney23, Tord Kjellstrom, Dominic Kniveton24, Pete Lampard19, Bruno Lemke25, Yang Liu26, Zhao Liu8, Melissa C. Lott27, Rachel Lowe5, Jaime Martinez-Urtaza28, Mark A. Maslin1, Lucy McAllister29, Alice McGushin1, Celia McMichael30, James Milner5, Maziar Moradi-Lakeh31, Karyn Morrissey32, Simon Munzert, Kris A. Murray5, Kris A. Murray33, Tara Neville9, Maria Nilsson7, Maquins Odhiambo Sewe7, Tadj Oreszczyn1, Matthias Otto25, Fereidoon Owfi, Olivia Pearman6, David Pencheon32, Ruth Quinn34, Mahnaz Rabbaniha, Elizabeth J. Z. Robinson3, Joacim Rocklöv7, Marina Romanello1, Jan C. Semenza35, Jodi D. Sherman14, Liuhua Shi, Marco Springmann18, Meisam Tabatabaei36, Jonathon Taylor, Joaquin Trinanes37, Joy Shumake-Guillemot, Bryan N. Vu26, Paul Wilkinson5, Matthew Winning1, Peng Gong8, Hugh Montgomery1, Anthony Costello1 
TL;DR: TRANSLATIONS For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.

886 citations


Journal ArticleDOI
Carole Escartin1, Elena Galea2, Andras Lakatos3, James P. O'Callaghan4, Gabor C. Petzold5, Gabor C. Petzold6, Alberto Serrano-Pozo7, Christian Steinhäuser6, Andrea Volterra8, Giorgio Carmignoto9, Giorgio Carmignoto10, Amit Agarwal11, Nicola J. Allen12, Alfonso Araque13, Luis Barbeito14, Ari Barzilai15, Dwight E. Bergles16, Gilles Bonvento1, Arthur M. Butt17, Wei Ting Chen18, Martine Cohen-Salmon19, Colm Cunningham20, Benjamin Deneen21, Bart De Strooper22, Bart De Strooper18, Blanca Diaz-Castro23, Cinthia Farina, Marc R. Freeman24, Vittorio Gallo25, James E. Goldman26, Steven A. Goldman27, Steven A. Goldman28, Magdalena Götz29, Antonia Gutierrez30, Philip G. Haydon31, Dieter Henrik Heiland32, Elly M. Hol33, Matthew Holt18, Masamitsu Iino34, Ksenia V. Kastanenka7, Helmut Kettenmann35, Baljit S. Khakh36, Schuichi Koizumi37, C. Justin Lee, Shane A. Liddelow38, Brian A. MacVicar39, Pierre J. Magistretti8, Pierre J. Magistretti40, Albee Messing41, Anusha Mishra24, Anna V. Molofsky42, Keith K. Murai43, Christopher M. Norris44, Seiji Okada45, Stéphane H. R. Oliet46, João Filipe Oliveira47, João Filipe Oliveira48, Aude Panatier46, Vladimir Parpura49, Marcela Pekna50, Milos Pekny50, Luc Pellerin51, Gertrudis Perea52, Beatriz G. Pérez-Nievas53, Frank W. Pfrieger54, Kira E. Poskanzer42, Francisco J. Quintana7, Richard M. Ransohoff, Miriam Riquelme-Perez1, Stefanie Robel55, Christine R. Rose56, Jeffrey D. Rothstein16, Nathalie Rouach19, David H. Rowitch3, Alexey Semyanov57, Alexey Semyanov58, Swetlana Sirko29, Harald Sontheimer55, Raymond A. Swanson42, Javier Vitorica59, Ina B. Wanner36, Levi B. Wood60, Jia Qian Wu61, Binhai Zheng62, Eduardo R. Zimmer63, Robert Zorec64, Michael V. Sofroniew36, Alexei Verkhratsky65, Alexei Verkhratsky66 
Université Paris-Saclay1, Autonomous University of Barcelona2, University of Cambridge3, National Institute for Occupational Safety and Health4, German Center for Neurodegenerative Diseases5, University of Bonn6, Harvard University7, University of Lausanne8, University of Padua9, National Research Council10, Heidelberg University11, Salk Institute for Biological Studies12, University of Minnesota13, Pasteur Institute14, Tel Aviv University15, Johns Hopkins University16, University of Portsmouth17, Katholieke Universiteit Leuven18, PSL Research University19, Trinity College, Dublin20, Baylor College of Medicine21, University College London22, University of Edinburgh23, Oregon Health & Science University24, National Institutes of Health25, Columbia University26, University of Rochester27, University of Copenhagen28, Ludwig Maximilian University of Munich29, University of Málaga30, Tufts University31, University of Freiburg32, Utrecht University33, Nihon University34, Max Delbrück Center for Molecular Medicine35, University of California, Los Angeles36, University of Yamanashi37, New York University38, University of British Columbia39, King Abdullah University of Science and Technology40, University of Wisconsin-Madison41, University of California, San Francisco42, McGill University43, University of Kentucky44, Kyushu University45, University of Bordeaux46, University of Minho47, Polytechnic Institute of Cávado and Ave48, University of Alabama at Birmingham49, University of Gothenburg50, University of Poitiers51, Cajal Institute52, King's College London53, University of Strasbourg54, Virginia Tech55, University of Düsseldorf56, I.M. Sechenov First Moscow State Medical University57, Russian Academy of Sciences58, University of Seville59, Georgia Institute of Technology60, University of Texas Health Science Center at Houston61, University of California, San Diego62, Universidade Federal do Rio Grande do Sul63, University of Ljubljana64, Ikerbasque65, University of Manchester66
TL;DR: In this article, the authors point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic vs-neuroprotective or A1-vs.A2.
Abstract: Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.

797 citations


Journal ArticleDOI
TL;DR: In this paper, a joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm.
Abstract: In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.

713 citations


Journal ArticleDOI
27 Aug 2021-Science
TL;DR: In this article, the authors discuss current evidence regarding the transmission of respiratory viruses by aerosols-how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission.
Abstract: The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols-how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.

492 citations


Journal ArticleDOI
Marina Romanello1, Alice McGushin1, Claudia Di Napoli2, Paul Drummond1, Nick Hughes1, Louis Jamart1, Harry Kennard1, Pete Lampard3, Baltazar Solano Rodriguez1, Nigel W. Arnell2, Sonja Ayeb-Karlsson4, Kristine Belesova5, Wenjia Cai6, Diarmid Campbell-Lendrum7, Stuart Capstick8, Jonathan Chambers7, Lingzhi Chu9, Luisa Ciampi2, Carole Dalin1, Niheer Dasandi10, Shouro Dasgupta, Michael Davies1, Paula Dominguez-Salas11, Robert Dubrow9, Kristie L. Ebi12, Matthew J. Eckelman13, Paul Ekins1, Luis E. Escobar14, Lucien Georgeson1, Delia Grace15, Hilary Graham3, Samuel H Gunther16, Stella M. Hartinger17, Kehan He1, Clare Heaviside1, Jeremy J. Hess12, Shih Che Hsu1, Slava Jankin, Marcia P. Jimenez18, Ilan Kelman1, Gregor Kiesewetter19, Patrick L. Kinney20, Tord Kjellstrom, Dominic Kniveton21, Jason Kai Wei Lee16, Bruno Lemke22, Yang Liu23, Zhao Liu6, Melissa C. Lott24, Rachel Lowe5, Jaime Martinez-Urtaza25, Mark A. Maslin1, Lucy McAllister26, Celia McMichael27, Zhifu Mi1, James Milner5, Kelton Minor28, Nahid Mohajeri1, Maziar Moradi-Lakeh29, Karyn Morrissey30, Simon Munzert, Kris A. Murray5, Tara Neville7, Maria Nilsson31, Nick Obradovich32, Maquins Odhiambo Sewe31, Tadj Oreszczyn1, Matthias Otto22, Fereidoon Owfi, Olivia Pearman33, David Pencheon34, Mahnaz Rabbaniha, Elizabeth J. Z. Robinson2, Joacim Rocklöv31, Renee N Salas18, Jan C. Semenza, Jodi D. Sherman9, Liuhua Shi23, Marco Springmann35, Meisam Tabatabaei36, Jonathon Taylor, Joaquin Trinanes37, Joy Shumake-Guillemot, Bryan N. Vu23, Fabian Wagner19, Paul Wilkinson5, Matthew Winning1, Marisol Yglesias17, Shihui Zhang6, Peng Gong38, Hugh Montgomery1, Anthony Costello1, Ian Hamilton1 
TL;DR: The 2021 report of the Lancet Countdown on health and climate change : code red for a healthy future as mentioned in this paper, is the most recent publication of the Countdown on Health and Climate Change, 2019.

491 citations


Journal ArticleDOI
TL;DR: It is explored how the risk of infection would vary with several influential factors: ventilation rate, duration of event, and deposition onto surfaces, to better understand the factors that promote superspreading events.
Abstract: During the 2020 COVID-19 pandemic, an outbreak occurred following attendance of a symptomatic index case at a weekly rehearsal on 10 March of the Skagit Valley Chorale (SVC). After that rehearsal, 53 members of the SVC among 61 in attendance were confirmed or strongly suspected to have contracted COVID-19 and two died. Transmission by the aerosol route is likely; it appears unlikely that either fomite or ballistic droplet transmission could explain a substantial fraction of the cases. It is vital to identify features of cases such as this to better understand the factors that promote superspreading events. Based on a conditional assumption that transmission during this outbreak was dominated by inhalation of respiratory aerosol generated by one index case, we use the available evidence to infer the emission rate of aerosol infectious quanta. We explore how the risk of infection would vary with several influential factors: ventilation rate, duration of event, and deposition onto surfaces. The results indicate a best-estimate emission rate of 970 ± 390 quanta/h. Infection risk would be reduced by a factor of two by increasing the aerosol loss rate to 5 h-1 and shortening the event duration from 2.5 to 1 h.

465 citations


Journal ArticleDOI
TL;DR: An iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived and can reduce up to 59.5% energy consumption compared to the conventional FL method.
Abstract: In this paper, the problem of energy efficient transmission and computation resource allocation for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its collected data and, then, sends the trained FL model to a base station (BS) which aggregates the local FL model and broadcasts it back to all of the users. Since FL involves an exchange of a learning model between users and the BS, both computation and communication latencies are determined by the learning accuracy level. Meanwhile, due to the limited energy budget of the wireless users, both local computation energy and transmission energy must be considered during the FL process. This joint learning and communication problem is formulated as an optimization problem whose goal is to minimize the total energy consumption of the system under a latency constraint. To solve this problem, an iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived. Since the iterative algorithm requires an initial feasible solution, we construct the completion time minimization problem and a bisection-based algorithm is proposed to obtain the optimal solution, which is a feasible solution to the original energy minimization problem. Numerical results show that the proposed algorithms can reduce up to 59.5% energy consumption compared to the conventional FL method.

365 citations


Journal ArticleDOI
TL;DR: The Q-Chem quantum chemistry program package as discussed by the authors provides a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, and methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques.
Abstract: This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.

360 citations


Journal ArticleDOI
17 Mar 2021-Nature
TL;DR: In this paper, a conservation planning framework is developed to prioritize highly protected marine protected areas in places that would result in multiple benefits today and in the future, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities.
Abstract: The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action. Using a globally coordinated strategic conservation framework to plan an increase in ocean protection through marine protected areas can yield benefits for biodiversity, food provisioning and carbon storage.

265 citations


Journal ArticleDOI
27 Jan 2021-Nature
TL;DR: The Living Planet Index (LPI) is a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species and the Red List Index (Red List Index) is calculated for all 31 oceanic species of sharks and rays.
Abstract: Overfishing is the primary cause of marine defaunation, yet declines in and increasing extinction risks of individual species are difficult to measure, particularly for the largest predators found in the high seas1-3. Here we calculate two well-established indicators to track progress towards Aichi Biodiversity Targets and Sustainable Development Goals4,5: the Living Planet Index (a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species) and the Red List Index (a measure of change in extinction risk calculated for all 31 oceanic species of sharks and rays). We find that, since 1970, the global abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase in relative fishing pressure. This depletion has increased the global extinction risk to the point at which three-quarters of the species comprising this functionally important assemblage are threatened with extinction. Strict prohibitions and precautionary science-based catch limits are urgently needed to avert population collapse6,7, avoid the disruption of ecological functions and promote species recovery8,9.

Journal ArticleDOI
D. Adhikari1, H. Albataineh2, Darko Androić3, K. A. Aniol4, D. S. Armstrong5, T. Averett5, C. Ayerbe Gayoso5, S. Barcus6, V. Bellini7, R. S. Beminiwattha8, Jay Benesch6, H. Bhatt9, D. Bhatta Pathak8, D. Bhetuwal9, B. Blaikie10, Q. Campagna5, A. Camsonne6, G. D. Cates11, Y. Chen8, C. Clarke12, J. C. Cornejo13, S. Covrig Dusa6, P. Datta14, A. Deshpande12, Dipangkar Dutta9, C. Feldman12, E. Fuchey14, C. Gal12, C. Gal11, D. Gaskell6, T. Gautam15, Michael Gericke10, C. Ghosh16, C. Ghosh12, I. Halilovic10, J. O. Hansen6, F. Hauenstein17, W. Henry18, Charles Horowitz19, C. Jantzi11, Siyu Jian11, S. Johnston16, D. C. Jones18, B. Karki20, S. Katugampola11, Cynthia Keppel6, P. M. King20, D. King21, M. Knauss22, K. S. Kumar16, T. Kutz12, N. Lashley-Colthirst15, G. Leverick10, H. Liu16, N. Liyange11, S. Malace6, R. Mammei23, Juliette Mammei10, M. McCaughan6, D. McNulty1, D. G. Meekins6, C. Metts5, R. Michaels6, M. M. Mondal12, Jim Napolitano18, A. Narayan24, D. Nikolaev18, M. N. H. Rashad17, V. Owen5, C. Palatchi11, J. Pan10, B. Pandey15, S. Park12, Kent Paschke11, M. Petrusky12, Michael Pitt25, S. Premathilake11, Andrew Puckett14, B. P. Quinn13, R. W. Radloff20, S. Rahman10, A. Rathnayake11, Brendan Reed19, P. E. Reimer26, R. Richards12, S. Riordan26, Y. Roblin6, S. Seeds14, A. Shahinyan27, Paul Souder21, L. G. Tang15, L. G. Tang6, Michaela Thiel28, Y. Tian21, G. M. Urciuoli, E. W. Wertz5, Bogdan Wojtsekhowski6, B. Yale5, T. Ye12, A. Yoon29, A. Zec11, W. Zhang12, Jiawen Zhang30, Jiawen Zhang12, X. Zheng11 
TL;DR: In this paper, the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons from 208 Pb was measured, leading to an extraction of the neutral weak form factor F = 0.0036(exp)±0.0013(theo)
Abstract: We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616 GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071 fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo) fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo) fm^{-3}. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars.


Journal ArticleDOI
TL;DR: A hardware-efficient variant of ADAPT-VQE that drastically reduces circuit depths using an operator pool that is guaranteed to contain the operators necessary to construct exact ans\"atze and shows that the minimal pool size that achieves this scales linearly with the number of qubits.
Abstract: The resources required to run a high-accuracy variational quantum eigensolver algorithm with a dynamically created ansatz are quantified and reduced significantly, easing the quantum simulation of many-body systems.

Journal ArticleDOI
24 Feb 2021
TL;DR: It is the position of the community represented by participants of the NSF workshop on Quantum Interconnects that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program.
Abstract: Just as classical information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the interconnect, a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in optical fiber, or microwave fields. While interconnects have been well engineered for decades in the realm of classical information technology, quantum interconnects (QuICs) present special challenges, as they must allow the transfer of fragile quantum states between different physical parts or degrees of freedom of the system. The diversity of QIT platforms (superconducting, atomic, solid-state color center, optical, etc.) that will form a quantum internet poses additional challenges. As quantum systems scale to larger size, the quantum interconnect bottleneck is imminent, and is emerging as a grand challenge for QIT. For these reasons, it is the position of the community represented by participants of the NSF workshop on Quantum Interconnects that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program. Given the diversity of QIT platforms, materials used, applications, and infrastructure required, a convergent research program including partnership between academia, industry and national laboratories is required.

Journal ArticleDOI
Barbara B. Lockee1
25 Jan 2021
TL;DR: In this article, the coronavirus pandemic has forced students and educators across all levels of education to rapidly adapt to online learning and the impact of this, and the developments required to make it work, could permanently change how education is delivered.
Abstract: The coronavirus pandemic has forced students and educators across all levels of education to rapidly adapt to online learning. The impact of this — and the developments required to make it work — could permanently change how education is delivered.

Journal ArticleDOI
19 Jan 2021-JAMA
TL;DR: The United States Preventable cause of disease, disability, and death in the US is attributed to cigarette smoking, including second-hand smoke exposure and complications in the offspring (such as sudden infant death syndrome and impaired lung function in childhood).
Abstract: Importance Tobacco use is the leading preventable cause of disease, disability, and death in the US In 2014, it was estimated that 480 000 deaths annually are attributed to cigarette smoking, including second hand smoke exposure Smoking during pregnancy can increase the risk of numerous adverse pregnancy outcomes (eg, miscarriage and congenital anomalies) and complications in the offspring (including sudden infant death syndrome and impaired lung function in childhood) In 2019, an estimated 506 million US adults (208% of the adult population) used tobacco; 140% of the US adult population currently smoked cigarettes and 45% of the adult population used electronic cigarettes (e-cigarettes) Among pregnant US women who gave birth in 2016, 72% reported smoking cigarettes while pregnant Objective To update its 2015 recommendation, the USPSTF commissioned a review to evaluate the benefits and harms of primary care interventions on tobacco use cessation in adults, including pregnant persons Population This recommendation statement applies to adults 18 years or older, including pregnant persons Evidence assessment The USPSTF concludes with high certainty that the net benefit of behavioral interventions and US Food and Drug Associated (FDA)-approved pharmacotherapy for tobacco smoking cessation, alone or combined, in nonpregnant adults who smoke is substantial The USPSTF concludes with high certainty that the net benefit of behavioral interventions for tobacco smoking cessation on perinatal outcomes and smoking cessation in pregnant persons is substantial The USPSTF concludes that the evidence on pharmacotherapy interventions for tobacco smoking cessation in pregnant persons is insufficient because few studies are available, and the balance of benefits and harms cannot be determined The USPSTF concludes that the evidence on the use of e-cigarettes for tobacco smoking cessation in adults, including pregnant persons, is insufficient, and the balance of benefits and harms cannot be determined The USPSTF has identified the lack of well-designed, randomized clinical trials on e-cigarettes that report smoking abstinence or adverse events as a critical gap in the evidence Recommendations The USPSTF recommends that clinicians ask all adults about tobacco use, advise them to stop using tobacco, and provide behavioral interventions and FDA-approved pharmacotherapy for cessation to nonpregnant adults who use tobacco (A recommendation) The USPSTF recommends that clinicians ask all pregnant persons about tobacco use, advise them to stop using tobacco, and provide behavioral interventions for cessation to pregnant persons who use tobacco (A recommendation) The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of pharmacotherapy interventions for tobacco cessation in pregnant persons (I statement) The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of e-cigarettes for tobacco cessation in adults, including pregnant persons The USPSTF recommends that clinicians direct patients who use tobacco to other tobacco cessation interventions with proven effectiveness and established safety (I statement)

Journal ArticleDOI
13 Jan 2021
TL;DR: The scale of the threats to the biosphere and all its lifeforms is in fact so great that it is difficult to grasp for even well-informed experts as mentioned in this paper, and this dire situation places an extraordinary responsibility on scientists to speak out candidly and accurately when engaging with government, business, and the public.
Abstract: We report three major and confronting environmental issues that have received little attention and require urgent action. First, we review the evidence that future environmental conditions will be far more dangerous than currently believed. The scale of the threats to the biosphere and all its lifeforms — including humanity — is in fact so great that it is difficult to grasp for even well-informed experts. Second, we ask what political or economic system, or leadership, is prepared to handle the predicted disasters, or even capable of such action. Third, this dire situation places an extraordinary responsibility on scientists to speak out candidly and accurately when engaging with government, business, and the public. We especially draw attention to the lack of appreciation of the enormous challenges to creating a sustainable future. The added stresses to human health, wealth, and well-being will perversely diminish our political capacity to mitigate the erosion of ecosystem services on which society depends. The science underlying these issues is strong, but awareness is weak. Without fully appreciating and broadcasting the scale of the problems and the enormity of the solutions required, society will fail to achieve even modest sustainability goals.

Journal ArticleDOI
TL;DR: In this paper, the convergence time of federated learning (FL) over a realistic wireless network is studied, and a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on the global FL model with high probabilities.
Abstract: In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL training loss and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that can select the users who can contribute toward improving the FL convergence speed more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time and the FL training loss. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on the global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to improve the global model, the FL convergence speed, and the training loss. Simulation results show that the proposed approach can reduce the FL convergence time by up to 56% and improve the accuracy of identifying handwritten digits by up to 3%, compared to a standard FL algorithm.

Journal ArticleDOI
24 Feb 2021
TL;DR: Investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines, according to participants of the NSF workshop on "Programmable Quantum Simulators".
Abstract: Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behaviors to explore and solve hard scientific, engineering, and computational problems. Rapid development over the last two decades has produced more than 300 quantum simulators in operation worldwide using a wide variety of experimental platforms. Recent advances in several physical architectures promise a golden age of quantum simulators ranging from highly optimized special purpose simulators to flexible programmable devices. These developments have enabled a convergence of ideas drawn from fundamental physics, computer science, and device engineering. They have strong potential to address problems of societal importance, ranging from understanding vital chemical processes, to enabling the design of new materials with enhanced performance, to solving complex computational problems. It is the position of the community, as represented by participants of the NSF workshop on "Programmable Quantum Simulators," that investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines. Such a program should address two areas of emphasis: (1) support for creating quantum simulator prototypes usable by the broader scientific community, complementary to the present universal quantum computer effort in industry; and (2) support for fundamental research carried out by a blend of multi-investigator, multi-disciplinary collaborations with resources for quantum simulator software, hardware, and education.

Journal ArticleDOI
TL;DR: A representative architecture of CAVs is introduced and the latest research advances, methods, and algorithms for sensing, perception, planning, and control of CAV are surveyed and their significant research issues enumerated.
Abstract: Autonomous vehicle (AV) technology can provide a safe and convenient transportation solution for the public, but the complex and various environments in the real world make it difficult to operate safely and reliably. A connected autonomous vehicle (CAV) is an AV with vehicle connectivity capability, which enhances the situational awareness of the AV and enables the cooperation between AVs. Hence, CAV technology can enhance the capabilities and robustness of AV to be a promising transportation solution in the future. This paper introduces a representative architecture of CAVs and surveys the latest research advances, methods, and algorithms for sensing, perception, planning, and control of CAVs. It reviews the state-of-the-art and state-of-the-practice (when applicable) of a multi-layer Perception-Planning-Control architecture including on-board sensors and vehicular communications, the methods of sensor fusion and localization and mapping in the perception layer, the algorithms of decision making and trajectory planning in the planning layer, and the control strategies of trajectory tracking in the control layer. Furthermore, the implementations and impact of vehicle connectivity and the corresponding consequential challenges of cooperative perception, complex connected decision making, and multi-vehicle controls are summarized and their significant research issues enumerated. Most importantly, the critical review in this paper provides a list and discussion of the remaining challenges and unsolved problems of CAVs in each Section which would be helpful to researchers in the field. The comprehensive coverage of this paper makes it particularly useful to academic researchers, practitioners, and students alike.

Journal ArticleDOI
TL;DR: A comprehensive review of spin-orbit torque (SOT) theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors is provided in this article.
Abstract: Spin–orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin–orbit coupling, conduction electron spins, and magnetization. More recently, interest has grown to include a variety of other processes that include phonons, magnons, or heat. Over the past decade, many materials have been explored to achieve a larger SOT efficiency. Recently, holistic design to maximize the performance of SOT devices has extended material research from a nonmagnetic layer to a magnetic layer. The rapid development of SOT has spurred a variety of SOT-based applications. In this article, we first review the theories of SOTs by introducing the various mechanisms thought to generate or control SOTs, such as the spin Hall effect, the Rashba-Edelstein effect, the orbital Hall effect, thermal gradients, magnons, and strain effects. Then, we discuss the materials that enable these effects, including metals, metallic alloys, topological insulators, 2-D materials, and complex oxides. We also discuss the important roles in SOT devices of different types of magnetic layers, such as magnetic insulators, antiferromagnets, and ferrimagnets. Afterward, we discuss device applications utilizing SOTs. We discuss and compare three- and two-terminal SOT-magnetoresistive random access memories (MRAMs); we mention various schemes to eliminate the need for an external field. We provide technological application considerations for SOT-MRAM and give perspectives on SOT-based neuromorphic devices and circuits. In addition to SOT-MRAM, we present SOT-based spintronic terahertz generators, nano-oscillators, and domain-wall and skyrmion racetrack memories. This article aims to achieve a comprehensive review of SOT theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors.

Journal ArticleDOI
TL;DR: In this paper, a taxonomy of federated learning over IoT networks is presented, where a set of metrics such as sparsification, robustness, quantization, scalability, security, and privacy are evaluated.
Abstract: The Internet of Things (IoT) will be ripe for the deployment of novel machine learning algorithm for both network and application management. However, given the presence of massively distributed and private datasets, it is challenging to use classical centralized learning algorithms in the IoT. To overcome this challenge, federated learning can be a promising solution that enables on-device machine learning without the need to migrate the private end-user data to a central cloud. In federated learning, only learning model updates are transferred between end-devices and the aggregation server. Although federated learning can offer better privacy preservation than centralized machine learning, it has still privacy concerns. In this paper, first, we present the recent advances of federated learning towards enabling federated learning-powered IoT applications. A set of metrics such as sparsification, robustness, quantization, scalability, security, and privacy, is delineated in order to rigorously evaluate the recent advances. Second, we devise a taxonomy for federated learning over IoT networks. Finally, we present several open research challenges with their possible solutions.

Journal ArticleDOI
TL;DR: In this article, the authors describe an integrated research agenda that could help mitigate future plant disease pandemics, including disease surveillance and improved detection technologies including pathogen sensors and predictive modeling and data analytics.
Abstract: Plant disease outbreaks are increasing and threaten food security for the vulnerable in many areas of the world. Now a global human pandemic is threatening the health of millions on our planet. A stable, nutritious food supply will be needed to lift people out of poverty and improve health outcomes. Plant diseases, both endemic and recently emerging, are spreading and exacerbated by climate change, transmission with global food trade networks, pathogen spillover, and evolution of new pathogen lineages. In order to tackle these grand challenges, a new set of tools that include disease surveillance and improved detection technologies including pathogen sensors and predictive modeling and data analytics are needed to prevent future outbreaks. Herein, we describe an integrated research agenda that could help mitigate future plant disease pandemics.

Journal ArticleDOI
S. Wehle, Iki Adachi1, Iki Adachi2, K. Adamczyk  +206 moreInstitutions (73)
TL;DR: In this article, the authors acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University.
Abstract: We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, No. FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSWSLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2016R1D1A1B01010135, No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294, No. 2019K1A3A7A09033840, No. 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information, and KREONET/GLORIAD the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.W03.31.0026; University of Tabuk research Grants No. S-1440-0321, No. S-0256-1438, and No. S-0280-1439 (Saudi Arabia); the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation.

Journal ArticleDOI
TL;DR: In this article, a secure data sharing scheme in the blockchain-enabled mobile edge computing system using an asynchronous learning approach is presented, and an adaptive privacy-preserving mechanism according to available system resources and privacy demands of users is presented.
Abstract: Mobile-edge computing (MEC) plays a significant role in enabling diverse service applications by implementing efficient data sharing. However, the unique characteristics of MEC also bring data privacy and security problem, which impedes the development of MEC. Blockchain is viewed as a promising technology to guarantee the security and traceability of data sharing. Nonetheless, how to integrate blockchain into MEC system is quite challenging because of dynamic characteristics of channel conditions and network loads. To this end, we propose a secure data sharing scheme in the blockchain-enabled MEC system using an asynchronous learning approach in this article. First, a blockchain-enabled secure data sharing framework in the MEC system is presented. Then, we present an adaptive privacy-preserving mechanism according to available system resources and privacy demands of users. Next, an optimization problem of secure data sharing is formulated in the blockchain-enabled MEC system with the aim to maximize the system performance with respect to the decreased energy consumption of MEC system and the increased throughput of blockchain system. Especially, an asynchronous learning approach is employed to solve the formulated problem. The numerical results demonstrate the superiority of our proposed secure data sharing scheme when compared with some popular benchmark algorithms in terms of average throughput, average energy consumption, and reward.

Journal ArticleDOI
TL;DR: The hidden pointer technique is developed and a new SSE scheme called Khons is proposed, which satisfies the security notion (with the original forward privacy notion) and is also efficient and implemented and results show that it is more efficient than existing SSE schemes with forward privacy.
Abstract: Searchable symmetric encryption (SSE) has been widely applied in the encrypted database for queries in practice. Although SSE is powerful and feature-rich, it is always plagued by information leaks. Some recent attacks point out that forward privacy which disallows leakage from update operations, now becomes a basic requirement for any newly designed SSE schemes. However, the subsequent search operations can still leak a significant amount of information. To further strengthen security, we extend the definition of forward privacy and propose the notion of “forward search privacy”. Intuitively, it requires search operations over newly added documents do not leak any information about past queries. The enhanced security notion poses new challenges to the design of SSE. We address the challenges by developing the hidden pointer technique (HPT) and propose a new SSE scheme called Khons , which satisfies our security notion (with the original forward privacy notion) and is also efficient. We implemented Khons and our experiment results on large dataset (wikipedia) show that it is more efficient than existing SSE schemes with forward privacy.

Journal ArticleDOI
TL;DR: The open, highly integrated and data-driven microscopy architecture needed to realize transformative discoveries in the coming decade is discussed.
Abstract: Electron microscopy touches on nearly every aspect of modern life, underpinning materials development for quantum computing, energy and medicine. We discuss the open, highly integrated and data-driven microscopy architecture needed to realize transformative discoveries in the coming decade.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the available evidence about the impact of the COVID-19 pandemic on cycling in various cities in the world and found that cycling was negatively affected.

Journal ArticleDOI
TL;DR: In this article, the authors examined changes in and predictors of adolescent mental health from before to during the COVID-19 pandemic in the Southeastern and Midwestern United States.
Abstract: Background The impact of chronic stressors like the COVID-19 pandemic is likely to be magnified in adolescents with pre-existing mental health risk, such as attention-deficit/hyperactivity disorder (ADHD). This study examined changes in and predictors of adolescent mental health from before to during the COVID-19 pandemic in the Southeastern and Midwestern United States. Methods Participants include 238 adolescents (132 males; ages 15-17; 118 with ADHD). Parents and adolescents provided ratings of mental health symptoms shortly before the COVID-19 pandemic and in spring and summer 2020. Results Adolescents on average experienced an increase in depression, anxiety, sluggish cognitive tempo, inattentive, and oppositional/defiant symptoms from pre-COVID-19 to spring 2020; however, with the exception of inattention, these symptoms decreased from spring to summer 2020. Adolescents with ADHD were more likely than adolescents without ADHD to experience an increase in inattentive, hyperactive/impulsive, and oppositional/defiant symptoms. Adolescents with poorer pre-COVID-19 emotion regulation abilities were at-risk for experiencing increases in all mental health symptoms relative to adolescents with better pre-COVID-19 emotion regulation abilities. Interactive risk based on ADHD status and pre-COVID-19 emotion regulation abilities was found for inattention and hyperactivity/impulsivity, such that adolescents with ADHD and poor pre-COVID-19 emotion regulation displayed the highest symptomatology across timepoints. Lower family income related to increases in inattention but higher family income related to increases in oppositional/defiant symptoms. Conclusions The early observed increases in adolescent mental health symptoms during the COVID-19 pandemic do not on average appear to be sustained following the lift of stay-at-home orders, though studies evaluating mental health across longer periods of time are needed. Emotion dysregulation and ADHD increase risk for sustained negative mental health functioning and highlight the need for interventions for these populations during chronic stressors. Results and clinical implications should be considered within the context of our predominately White, middle class sample.