scispace - formally typeset
Search or ask a question
Institution

Volga State University of Water Transport

EducationNizhny Novgorod, Russia
About: Volga State University of Water Transport is a education organization based out in Nizhny Novgorod, Russia. It is known for research contribution in the topics: Attractor & Creep. The organization has 71 authors who have published 75 publications receiving 224 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
01 Nov 2017-Vacuum
TL;DR: In this article, the use of a subterahertz gyrotron setup with output frequency of 263 GHz and a nominal power of 1kW as a radiation source to obtain nanoscale particles of metal oxides by the evaporation-condensation technique is demonstrated.

23 citations

Journal ArticleDOI
15 Apr 2021-Chaos
TL;DR: This paper constructs a Poincaré return map that accounts for the presence of sliding motions and derives an explicit scaling factor for period-doubling bifurcations associated with sliding multi-loop homoclinic orbits and the formation of a quasi-attractor.
Abstract: Non-smooth systems can generate dynamics and bifurcations that are drastically different from their smooth counterparts. In this paper, we study such homoclinic bifurcations in a piecewise-smooth analytically tractable Lorenz-type system that was recently introduced by Belykh et al. [Chaos 29, 103108 (2019)]. Through a rigorous analysis, we demonstrate that the emergence of sliding motions leads to novel bifurcation scenarios in which bifurcations of unstable homoclinic orbits of a saddle can yield stable limit cycles. These bifurcations are in sharp contrast with their smooth analogs that can generate only unstable (saddle) dynamics. We construct a Poincare return map that accounts for the presence of sliding motions, thereby rigorously characterizing sliding homoclinic bifurcations that destroy a chaotic Lorenz-type attractor. In particular, we derive an explicit scaling factor for period-doubling bifurcations associated with sliding multi-loop homoclinic orbits and the formation of a quasi-attractor. Our analytical results lay the foundation for the development of non-classical global bifurcation theory in non-smooth flow systems.

15 citations

Journal ArticleDOI
TL;DR: In this paper, a simplified model of the particle transport in an evaporating droplet with a contact line pinned to a hydrophilic substrate was developed, which allows us to perform computer simulations of the particles transport.
Abstract: A simplified model is developed, which allows us to perform computer simulations of the particles transport in an evaporating droplet with a contact line pinned to a hydrophilic substrate. The model accounts for advection in the droplet, diffusion, and particle attraction by capillary forces. On the basis of the simulations, we analyze the physical mechanisms of forming of individual chains of particles inside the annular sediment. The parameters chosen correspond to the experiments of Park and Moon [Langmuir 22, 3506 (2006)LANGD50743-746310.1021/la053450j], where an annular deposition and snakelike chains of colloid particles have been identified. The annular sediment is formed by advection and diffusion transport. We find that the close packing of the particles in the sediment is possible if the evaporation time exceeds the characteristic time of diffusion-based ordering. We show that the chains are formed by the end of the evaporation process due to capillary attraction of particles in the region bounded by a fixing radius, where the local droplet height is comparable to the particle size. At the beginning of the evaporation, the annular deposition is shown to expand faster than the fixing radius moves. However, by the end of the process, the fixing radius rapidly outreaches the expanding inner front of the ring. The snakelike chains are formed at this final stage when the fixing radius moves toward the symmetry axis.

13 citations

Posted Content
TL;DR: In this paper, the authors developed foot force models of pedestrians' response to bridge motion and detailed, yet analytically tractable models of crowd phase-locking to investigate to what degree pedestrian synchrony must be present for a bridge to wobble significantly and what is a critical crowd size.
Abstract: Modern pedestrian and suspension bridges are designed using industry-standard packages, yet disastrous resonant vibrations are observed, necessitating multi-million dollar repairs. Recent examples include pedestrian induced vibrations during the openings of the Solferino Bridge in Paris in 1999 and the increased bouncing of the Squibb Park Bridge in Brooklyn in 2014. The most prominent example of an unstable lively bridge is the London Millennium Bridge which started wobbling as a result of pedestrian-bridge interactions. Pedestrian phase-locking due to footstep phase adjustment, is suspected to be the main cause of its large lateral vibrations; however, its role in the initiation of wobbling was debated. In this paper, we develop foot force models of pedestrians' response to bridge motion and detailed, yet analytically tractable models of crowd phase-locking. We use bio-mechanically inspired models of crowd lateral movement to investigate to what degree pedestrian synchrony must be present for a bridge to wobble significantly and what is a critical crowd size. Our results can be used as a safety guideline for designing pedestrian bridges or limiting the maximum occupancy of an existing bridge. The pedestrian models can be used as "crash test dummies" when numerically probing a specific bridge design. This is particularly important because the US code for designing pedestrian bridges does not contain explicit guidelines that account for the collective pedestrian behavior.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the authors theoretically study the method of evaporative lithography in combination with external infrared heating, which makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask.
Abstract: The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.

9 citations


Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20222
202112
202012
201916
201812
201713