Institution
Wageningen University and Research Centre
Education•Wageningen, Netherlands•
About: Wageningen University and Research Centre is a(n) education organization based out in Wageningen, Netherlands. It is known for research contribution in the topic(s): Population & Sustainability. The organization has 23474 authors who have published 54833 publication(s) receiving 2608897 citation(s).
Topics: Population, Sustainability, European union, Agriculture, Soil water
Papers published on a yearly basis
Papers
More filters
[...]
Stockholm Environment Institute1, Stockholm University2, Australian National University3, University of Alaska Fairbanks4, Université catholique de Louvain5, University of East Anglia6, Wageningen University and Research Centre7, Royal Swedish Academy of Sciences8, Potsdam Institute for Climate Impact Research9, University of Oxford10, James Cook University11, Arizona State University12, Royal Institute of Technology13, University of Minnesota14, University of Vermont15, Stockholm International Water Institute16, California State University San Marcos17, Goddard Institute for Space Studies18, Commonwealth Scientific and Industrial Research Organisation19, University of Arizona20, Max Planck Society21
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
7,735 citations
[...]
TL;DR: Recent studies show that a loss of resilience usually paves the way for a switch to an alternative state, which suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.
Abstract: All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.
5,705 citations
[...]
Australian National University1, Stockholm Resilience Centre2, University of Copenhagen3, McGill University4, Stellenbosch University5, University of Wisconsin-Madison6, Wageningen University and Research Centre7, Stockholm University8, Royal Swedish Academy of Sciences9, Potsdam Institute for Climate Impact Research10, International Livestock Research Institute11, Commonwealth Scientific and Industrial Research Organisation12, University College London13, Stockholm Environment Institute14, The Energy and Resources Institute15, University of California, San Diego16, Royal Institute of Technology17
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.
5,367 citations
[...]
Macquarie University1, University of Minnesota2, Stanford University3, Simón Bolívar University4, Wageningen University and Research Centre5, Smithsonian Environmental Research Center6, University of Alaska Fairbanks7, VU University Amsterdam8, University of Zurich9, Centre national de la recherche scientifique10, Curtin University11, Tohoku University12, University of Wisconsin–Eau Claire13, Landcare Research14, University of Concepción15, University of Cape Town16, University of Tartu17, Polish Academy of Sciences18, University of Tokyo19, Utrecht University20, University of Western Australia21, Charles Darwin University22, Ural State University23, University of Toronto24, Texas A&M University25, University of Córdoba (Spain)26
TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Abstract: Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
5,361 citations
[...]
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as discussed by the authors, the authors used the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data.
Abstract: Background Up-to-date evidence on levels and trends for age-sex-specifi c all-cause and cause-specifi c mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specifi c all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specifi c causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65.3 years (UI 65.0-65.6) in 1990, to 71.5 years (UI 71.0-71.9) in 2013, while the number of deaths increased from 47.5 million (UI 46.8-48.2) to 54.9 million (UI 53.6-56.3) over the same interval. Global progress masked variation by age and sex: for children, average absolute diff erences between countries decreased but relative diff erences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative diff erences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10.7%, from 4.3 million deaths in 1990 to 4.8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specifi c mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.
5,001 citations
Authors
Showing all 23474 results
Name | H-index | Papers | Citations |
---|---|---|---|
Walter C. Willett | 334 | 2399 | 413322 |
Albert Hofman | 267 | 2530 | 321405 |
Frank B. Hu | 250 | 1675 | 253464 |
Willem M. de Vos | 148 | 670 | 88146 |
Willy Verstraete | 139 | 920 | 76659 |
Jonathan D. G. Jones | 129 | 417 | 80908 |
Bert Brunekreef | 124 | 806 | 81938 |
Pedro W. Crous | 115 | 809 | 51925 |
Marten Scheffer | 111 | 350 | 73789 |
Wim E. Hennink | 110 | 600 | 49940 |
Daan Kromhout | 108 | 453 | 55551 |
Peter H. Verburg | 107 | 464 | 34254 |
Marcel Dicke | 107 | 613 | 42959 |
Vincent W. V. Jaddoe | 106 | 1008 | 44269 |
Hao Wu | 105 | 669 | 42607 |