scispace - formally typeset
Search or ask a question
Institution

Wageningen University and Research Centre

EducationWageningen, Netherlands
About: Wageningen University and Research Centre is a education organization based out in Wageningen, Netherlands. It is known for research contribution in the topics: Population & Sustainability. The organization has 23474 authors who have published 54833 publications receiving 2608897 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Processing of high-flavonol tomatoes demonstrated that 65% of flavonols present in the fresh fruit were retained in the processed paste, supporting their potential as raw materials for tomato-based functional food products, and upregulated flavonol biosynthesis in the tomato in order to generate fruit with increased antioxidant capacity and a wider range of potential health benefit properties.
Abstract: Tomatoes are an excellent source of the carotenoid lycopene, a compound that is thought to be protective against prostate cancer. They also contain small amounts of flavonoids in their peel (∼5–10 mg/kg fresh weight), mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. Flavonols are very potent antioxidants, and an increasing body of epidemiological data suggests that high flavonoid intake is correlated with a decreased risk for cardiovascular disease. We have upregulated flavonol biosynthesis in the tomato in order to generate fruit with increased antioxidant capacity and a wider range of potential health benefit properties. This involved transformation of tomato with the Petunia chi-a gene encoding chalcone isomerase. Resulting transgenic tomato lines produced an increase of up to 78 fold in fruit peel flavonols, mainly due to an accumulation of rutin. No gross phenotypical differences were observed between high-flavonol transgenic and control lines. The phenotype segregated with the transgene and demonstrated a stable inheritance pattern over four subsequent generations tested thus far. Whole-fruit flavonol levels in the best of these lines are similar to those found in onions, a crop with naturally high levels of flavonol compounds. Processing of high-flavonol tomatoes demonstrated that 65% of flavonols present in the fresh fruit were retained in the processed paste, supporting their potential as raw materials for tomato-based functional food products.

520 citations

Journal ArticleDOI
TL;DR: It is proposed that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants’ root-to-shoot ratio and that the net result of strigolACTone action is dependent on the auxin status of the plant.
Abstract: In this study, the role of the recently identified class of phytohormones, strigolactones, in shaping root architecture was addressed. Primary root lengths of strigolactone-deficient and -insensitive Arabidopsis (Arabidopsis thaliana) plants were shorter than those of wild-type plants. This was accompanied by a reduction in meristem cell number, which could be rescued by application of the synthetic strigolactone analog GR24 in all genotypes except in the strigolactone-insensitive mutant. Upon GR24 treatment, cells in the transition zone showed a gradual increase in cell length, resulting in a vague transition point and an increase in transition zone size. PIN1/3/7-green fluorescent protein intensities in provascular tissue of the primary root tip were decreased, whereas PIN3-green fluorescent protein intensity in the columella was not affected. During phosphate-sufficient conditions, GR24 application to the roots suppressed lateral root primordial development and lateral root forming potential, leading to a reduction in lateral root density. Moreover, auxin levels in leaf tissue were reduced. When auxin levels were increased by exogenous application of naphthylacetic acid, GR24 application had a stimulatory effect on lateral root development instead. Similarly, under phosphate-limiting conditions, endogenous strigolactones present in wild-type plants stimulated a more rapid outgrowth of lateral root primordia when compared with strigolactone-deficient mutants. These results suggest that strigolactones are able to modulate local auxin levels and that the net result of strigolactone action is dependent on the auxin status of the plant. We postulate that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants’ root-to-shoot ratio.

519 citations

Journal ArticleDOI
TL;DR: It is suggested that antibiotic interactions within microbial communities may be very effective in maintaining diversity, based on a spatially explicit game theoretical model with multiply cyclic dominance structures.
Abstract: Evolutionary processes generating biodiversity and ecological mechanisms maintaining biodiversity seem to be diverse themselves. Conventional explanations of biodiversity such as niche differentiation, density-dependent predation pressure, or habitat heterogeneity seem satisfactory to explain diversity in communities of macrobial organisms such as higher plants and animals. For a long time the often high diversity among microscopic organisms in seemingly uniform environments, the famous "paradox of the plankton," has been difficult to understand. The biodiversity in bacterial communities has been shown to be sometimes orders of magnitudes higher than the diversity of known macrobial systems. Based on a spatially explicit game theoretical model with multiply cyclic dominance structures, we suggest that antibiotic interactions within microbial communities may be very effective in maintaining diversity.

518 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems during heatwaves and conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates the impact of the most extreme heat and/or long-lasting events.
Abstract: Recent European heatwaves have raised interest in the impact of land cover conditions on temperature extremes. At present, it is believed that such extremes are enhanced by stronger surface heating of the atmosphere, when soil moisture content is below average. However, the impact of land cover on the exchange of water and energy and the interaction of this exchange with the soil water balance during heatwaves is largely unknown. Here we analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems during heatwaves. We find that initially, surface heating is twice as high over forest than over grassland. Over grass, heating is suppressed by increased evaporation in response to increased solar radiation and temperature. Ultimately, however, this process accelerates soil moisture depletion and induces a critical shift in the regional climate system that leads to increased heating. We propose that this mechanism may explain the extreme temperatures in August 2003. We conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates the impact of the most extreme heat and/or long-lasting events.

517 citations

Journal ArticleDOI
TL;DR: This review provides an overview of how sustaining absolute protein intake affects metabolic targets for weight loss and weight maintenance during negative energy balance, i.e., sustaining satiety and energy expenditure and sparing fat-free mass, resulting in energy inefficiency.
Abstract: The role of dietary protein in weight loss and weight maintenance encompasses influences on crucial targets for body weight regulation, namely satiety, thermogenesis, energy efficiency, and body composition. Protein-induced satiety may be mainly due to oxidation of amino acids fed in excess, especially in diets with "incomplete" proteins. Protein-induced energy expenditure may be due to protein and urea synthesis and to gluconeogenesis; "complete" proteins having all essential amino acids show larger increases in energy expenditure than do lower-quality proteins. With respect to adverse effects, no protein-induced effects are observed on net bone balance or on calcium balance in young adults and elderly persons. Dietary protein even increases bone mineral mass and reduces incidence of osteoporotic fracture. During weight loss, nitrogen intake positively affects calcium balance and consequent preservation of bone mineral content. Sulphur-containing amino acids cause a blood pressure-raising effect by loss of nephron mass. Subjects with obesity, metabolic syndrome, and type 2 diabetes are particularly susceptible groups. This review provides an overview of how sustaining absolute protein intake affects metabolic targets for weight loss and weight maintenance during negative energy balance, i.e., sustaining satiety and energy expenditure and sparing fat-free mass, resulting in energy inefficiency. However, the long-term relationship between net protein synthesis and sparing fat-free mass remains to be elucidated.

517 citations


Authors

Showing all 23851 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Albert Hofman2672530321405
Frank B. Hu2501675253464
Willem M. de Vos14867088146
Willy Verstraete13992076659
Jonathan D. G. Jones12941780908
Bert Brunekreef12480681938
Pedro W. Crous11580951925
Marten Scheffer11135073789
Wim E. Hennink11060049940
Daan Kromhout10845355551
Peter H. Verburg10746434254
Marcel Dicke10761342959
Vincent W. V. Jaddoe106100844269
Hao Wu10566942607
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

96% related

University of Georgia
93.6K papers, 3.7M citations

91% related

Commonwealth Scientific and Industrial Research Organisation
79.9K papers, 3.3M citations

90% related

Ghent University
111K papers, 3.7M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
2022861
20214,144
20203,722
20193,443
20183,226