scispace - formally typeset
Search or ask a question
Institution

Wageningen University and Research Centre

EducationWageningen, Netherlands
About: Wageningen University and Research Centre is a education organization based out in Wageningen, Netherlands. It is known for research contribution in the topics: Population & Sustainability. The organization has 23474 authors who have published 54833 publications receiving 2608897 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The major contributions of the analysis of natural variation to the understanding of plant development and physiology are discussed, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation.
Abstract: Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available.

441 citations

Journal ArticleDOI
TL;DR: The chemical analysis and quality control of Ginkgo leaves and extracts is reviewed in this paper, where the terpene trilactones are extracted with aqueous acetone and supercritical fluid extraction.

441 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present seventeen articles dealing with social, economic and institutional dynamics of precision farming, digital agriculture, smart farming or agriculture 4.0, and reveal new insights on the link between digital agriculture and farm diversity, new economic, business and institutional arrangements both on-farm, in the value chain and food system, and in the innovation system.
Abstract: While there is a lot of literature from a natural or technical sciences perspective on different forms of digitalization in agriculture (big data, internet of things, augmented reality, robotics, sensors, 3D printing, system integration, ubiquitous connectivity, artificial intelligence, digital twins, and blockchain among others), social science researchers have recently started investigating different aspects of digital agriculture in relation to farm production systems, value chains and food systems. This has led to a burgeoning but scattered social science body of literature. There is hence lack of overview of how this field of study is developing, and what are established, emerging, and new themes and topics. This is where this article aims to make a contribution, beyond introducing this special issue which presents seventeen articles dealing with social, economic and institutional dynamics of precision farming, digital agriculture, smart farming or agriculture 4.0. An exploratory literature review shows that five thematic clusters of extant social science literature on digitalization in agriculture can be identified: 1) Adoption, uses and adaptation of digital technologies on farm; 2) Effects of digitalization on farmer identity, farmer skills, and farm work; 3) Power, ownership, privacy and ethics in digitalizing agricultural production systems and value chains; 4) Digitalization and agricultural knowledge and innovation systems (AKIS); and 5) Economics and management of digitalized agricultural production systems and value chains. The main contributions of the special issue articles are mapped against these thematic clusters, revealing new insights on the link between digital agriculture and farm diversity, new economic, business and institutional arrangements both on-farm, in the value chain and food system, and in the innovation system, and emerging ways to ethically govern digital agriculture. Emerging lines of social science enquiry within these thematic clusters are identified and new lines are suggested to create a future research agenda on digital agriculture, smart farming and agriculture 4.0. Also, four potential new thematic social science clusters are also identified, which so far seem weakly developed: 1) Digital agriculture socio-cyber-physical-ecological systems conceptualizations; 2) Digital agriculture policy processes; 3) Digitally enabled agricultural transition pathways; and 4) Global geography of digital agriculture development. This future research agenda provides ample scope for future interdisciplinary and transdisciplinary science on precision farming, digital agriculture, smart farming and agriculture 4.0.

440 citations

Journal ArticleDOI
TL;DR: A review of the use of medicinal and aromatic plants (MAPs) in various industries, as well as trends in the various markets involved, is given in this article, where economic and regulatory issues relevant for such uses of MAP material are discussed, with a focus on the situation in the European Union.

440 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a different operational mode for MCDI, whereby desalination is driven by a constant electrical current, which leads to a constant salt concentration in the desalinated stream over long periods of time.
Abstract: Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In the salt removal step, ions are adsorbed at the carbon–water interface within the micropores inside the porous electrodes. After the electrodes reach a certain adsorption capacity, the cell voltage is reduced or even reversed, which leads to ion release from the electrodes and a concentrated salt solution in the spacer channel, which is flushed out, after which the cycle can start over again. Ion-exchange membranes are positioned in front of each porous electrode, which has the advantage of preventing the co-ions from leaving the electrode region during ion adsorption, while also allowing for ion desorption at reversed voltage. Both effects significantly increase the salt removal capacity of the system per cycle. The classical operational mode of MCDI at a constant cell voltage results in an effluent stream of desalinated water of which the salt concentration varies with time. In this paper, we propose a different operational mode for MCDI, whereby desalination is driven by a constant electrical current, which leads to a constant salt concentration in the desalinated stream over long periods of time. Furthermore, we show how the salt concentration of the desalinated stream can be accurately adjusted to a certain setpoint, by either varying the electrical current level and/or the water flow rate. Finally, we present an extensive dataset for the energy requirements of MCDI, both for operation at constant voltage and at constant current, and in both cases also for the related technology in which membranes are not included (CDI). We find consistently that in MCDI the energy consumption per mole of salt removed is lower than that in CDI. Within the range 10–200 mM ionic strength of the water to be treated, we find for MCDI a constant energy consumption of ∼22 kT per ion removed. Results in this work are an essential tool to evaluate the economic viability of MCDI for the treatment of saltwater.

439 citations


Authors

Showing all 23851 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Albert Hofman2672530321405
Frank B. Hu2501675253464
Willem M. de Vos14867088146
Willy Verstraete13992076659
Jonathan D. G. Jones12941780908
Bert Brunekreef12480681938
Pedro W. Crous11580951925
Marten Scheffer11135073789
Wim E. Hennink11060049940
Daan Kromhout10845355551
Peter H. Verburg10746434254
Marcel Dicke10761342959
Vincent W. V. Jaddoe106100844269
Hao Wu10566942607
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

96% related

University of Georgia
93.6K papers, 3.7M citations

91% related

Commonwealth Scientific and Industrial Research Organisation
79.9K papers, 3.3M citations

90% related

Ghent University
111K papers, 3.7M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
2022861
20214,144
20203,722
20193,443
20183,226