scispace - formally typeset
Search or ask a question
Institution

Wageningen University and Research Centre

EducationWageningen, Netherlands
About: Wageningen University and Research Centre is a education organization based out in Wageningen, Netherlands. It is known for research contribution in the topics: Population & Sustainability. The organization has 23474 authors who have published 54833 publications receiving 2608897 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 2011-Appetite
TL;DR: In order to make meat substitutes more attractive to meat consumers, it would not recommend to focus on communication of ethical arguments, but to significantly improve the sensory quality and resemblance to meat.

436 citations

Journal ArticleDOI
TL;DR: It is shown that Ve1, but not Ve2, provides resistance in tomato against race 1 strains of V. albo-atrum and not against race 2 strains, and Ve1-mediated resistance signaling only partially overlaps with signaling mediated by Cf proteins, type members of the receptor-like protein class of resistance proteins.
Abstract: Vascular wilt diseases caused by soil-borne pathogens are among the most devastating plant diseases worldwide. The Verticillium genus includes vascular wilt pathogens with a wide host range. Although V. longisporum infects various hosts belonging to the Cruciferaceae, V. dahliae and V. albo-atrum cause vascular wilt diseases in over 200 dicotyledonous species, including economically important crops. A locus responsible for resistance against race 1 strains of V. dahliae and V. albo-atrum has been cloned from tomato (Solanum lycopersicum) only. This locus, known as Ve, comprises two closely linked inversely oriented genes, Ve1 and Ve2, that encode cell surface receptor proteins of the extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. Here, we show that Ve1, but not Ve2, provides resistance in tomato against race 1 strains of V. dahliae and V. albo-atrum and not against race 2 strains. Using virus-induced gene silencing in tomato, the signaling cascade downstream of Ve1 is shown to require both EDS1 and NDR1. In addition, NRC1, ACIF, MEK2, and SERK3/BAK1 also act as positive regulators of Ve1 in tomato. In conclusion, Ve1-mediated resistance signaling only partially overlaps with signaling mediated by Cf proteins, type members of the receptor-like protein class of resistance proteins.

435 citations

Journal ArticleDOI
TL;DR: Insight is revealed into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances the understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
Abstract: The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.

435 citations

Journal ArticleDOI
Matteo Dainese1, Emily A. Martin1, Marcelo A. Aizen2, Matthias Albrecht, Ignasi Bartomeus3, Riccardo Bommarco4, Luísa G. Carvalheiro5, Luísa G. Carvalheiro6, Rebecca Chaplin-Kramer7, Vesna Gagic8, Lucas Alejandro Garibaldi9, Jaboury Ghazoul10, Heather Grab11, Mattias Jonsson4, Daniel S. Karp12, Christina M. Kennedy13, David Kleijn14, Claire Kremen15, Douglas A. Landis16, Deborah K. Letourneau17, Lorenzo Marini18, Katja Poveda11, Romina Rader19, Henrik G. Smith20, Teja Tscharntke21, Georg K.S. Andersson20, Isabelle Badenhausser22, Isabelle Badenhausser23, Svenja Baensch21, Antonio Diego M. Bezerra24, Felix J.J.A. Bianchi14, Virginie Boreux25, Virginie Boreux10, Vincent Bretagnolle23, Berta Caballero-López, Pablo Cavigliasso26, Aleksandar Ćetković27, Natacha P. Chacoff28, Alice Classen1, Sarah Cusser29, Felipe D. da Silva e Silva30, G. Arjen de Groot14, Jan H. Dudenhöffer31, Johan Ekroos20, Thijs P.M. Fijen14, Pierre Franck22, Breno Magalhães Freitas24, Michael P.D. Garratt32, Claudio Gratton33, Juliana Hipólito9, Juliana Hipólito34, Andrea Holzschuh1, Lauren Hunt35, Aaron L. Iverson11, Shalene Jha36, Tamar Keasar37, Tania N. Kim38, Miriam Kishinevsky37, Björn K. Klatt21, Björn K. Klatt20, Alexandra-Maria Klein25, Kristin M. Krewenka39, Smitha Krishnan40, Smitha Krishnan10, Ashley E. Larsen41, Claire Lavigne22, Heidi Liere42, Bea Maas43, Rachel E. Mallinger44, Eliana Martinez Pachon, Alejandra Martínez-Salinas45, Timothy D. Meehan46, Matthew G. E. Mitchell15, Gonzalo Alberto Roman Molina47, Maike Nesper10, Lovisa Nilsson20, Megan E. O'Rourke48, Marcell K. Peters1, Milan Plećaš27, Simon G. Potts33, Davi de L. Ramos, Jay A. Rosenheim12, Maj Rundlöf20, Adrien Rusch49, Agustín Sáez2, Jeroen Scheper14, Matthias Schleuning, Julia Schmack50, Amber R. Sciligo51, Colleen L. Seymour, Dara A. Stanley52, Rebecca Stewart20, Jane C. Stout53, Louis Sutter, Mayura B. Takada54, Hisatomo Taki, Giovanni Tamburini25, Matthias Tschumi, Blandina Felipe Viana55, Catrin Westphal21, Bryony K. Willcox19, Stephen D. Wratten56, Akira Yoshioka57, Carlos Zaragoza-Trello3, Wei Zhang58, Yi Zou59, Ingolf Steffan-Dewenter1 
University of Würzburg1, National University of Comahue2, Spanish National Research Council3, Swedish University of Agricultural Sciences4, Universidade Federal de Goiás5, University of Lisbon6, Stanford University7, Commonwealth Scientific and Industrial Research Organisation8, National University of Río Negro9, ETH Zurich10, Cornell University11, University of California, Davis12, The Nature Conservancy13, Wageningen University and Research Centre14, University of British Columbia15, Great Lakes Bioenergy Research Center16, University of California, Santa Cruz17, University of Padua18, University of New England (Australia)19, Lund University20, University of Göttingen21, Institut national de la recherche agronomique22, University of La Rochelle23, Federal University of Ceará24, University of Freiburg25, Concordia University Wisconsin26, University of Belgrade27, National University of Tucumán28, Michigan State University29, University of Brasília30, University of Greenwich31, University of Reading32, University of Wisconsin-Madison33, National Institute of Amazonian Research34, Boise State University35, University of Texas at Austin36, University of Haifa37, Kansas State University38, University of Hamburg39, Bioversity International40, University of California, Santa Barbara41, Seattle University42, University of Vienna43, University of Florida44, Centro Agronómico Tropical de Investigación y Enseñanza45, National Audubon Society46, University of Buenos Aires47, Virginia Tech48, University of Bordeaux49, University of Auckland50, University of California, Berkeley51, University College Dublin52, Trinity College, Dublin53, University of Tokyo54, Federal University of Bahia55, Lincoln University (New Zealand)56, National Institute for Environmental Studies57, International Food Policy Research Institute58, Xi'an Jiaotong-Liverpool University59
TL;DR: Using a global database from 89 studies (with 1475 locations), the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change is partitioned.
Abstract: Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.

434 citations

Journal ArticleDOI
TL;DR: The authors investigated the effects of 30-nm PS on the feeding behavior of the blue mussel (Mytilus edulis) by exposing the organism to different nano PS and different algae concentrations, and found that the total weight of the feces and pseudofeces increased with increasing nanoPS and increasing algae concentration.
Abstract: As the industrial production of nanoplastic and the degradation of microplastic into smaller particles at sea increase, the potential amount of nanoplastics in the marine environment rises. It has been reported that mussels uptake 100-nm polystyrene (PS) beads; to date, however, the effects of this uptake on the organism are unknown. In the present study, the authors investigated the effects of 30-nm PS on the feeding behavior of the blue mussel (Mytilus edulis) by exposing the organism to different nano PS and different algae (Pavlova lutheri) concentrations. The state of nano PS aggregation in the exposure medium was assessed using dynamic light scattering. In all treatments that contained nano PS, M. edulis produced pseudofeces. The total weight of the feces and pseudofeces increased with increasing nano PS and increasing algae concentration. Furthermore, M. edulis reduced its filtering activity when nano PS was present but still caused a decrease in the apparent nano PS concentration in the water. The presence of nano PS around the foot of M. edulis after the bioassay confirmed that the organism removed nano PS from the water. Chronic effect studies are therefore needed to investigate the effects of nanoplastics in M. edulis and possible consequences for its predators, including humans.

433 citations


Authors

Showing all 23851 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Albert Hofman2672530321405
Frank B. Hu2501675253464
Willem M. de Vos14867088146
Willy Verstraete13992076659
Jonathan D. G. Jones12941780908
Bert Brunekreef12480681938
Pedro W. Crous11580951925
Marten Scheffer11135073789
Wim E. Hennink11060049940
Daan Kromhout10845355551
Peter H. Verburg10746434254
Marcel Dicke10761342959
Vincent W. V. Jaddoe106100844269
Hao Wu10566942607
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

96% related

University of Georgia
93.6K papers, 3.7M citations

91% related

Commonwealth Scientific and Industrial Research Organisation
79.9K papers, 3.3M citations

90% related

Ghent University
111K papers, 3.7M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
2022861
20214,144
20203,722
20193,443
20183,226