scispace - formally typeset
Search or ask a question
Institution

Wageningen University and Research Centre

EducationWageningen, Netherlands
About: Wageningen University and Research Centre is a education organization based out in Wageningen, Netherlands. It is known for research contribution in the topics: Population & Sustainability. The organization has 23474 authors who have published 54833 publications receiving 2608897 citations.


Papers
More filters
Journal ArticleDOI
Jingjing Liang1, Thomas W. Crowther2, Nicolas Picard3, Susan K. Wiser4, Mo Zhou1, Giorgio Alberti5, Ernst Detlef Schulze6, A. David McGuire7, Fabio Bozzato, Hans Pretzsch8, Sergio de-Miguel, Alain Paquette9, Bruno Hérault10, Michael Scherer-Lorenzen11, Christopher B. Barrett12, Henry B. Glick2, Geerten M. Hengeveld13, Gert-Jan Nabuurs13, Sebastian Pfautsch14, Helder Viana15, Helder Viana16, Alexander Christian Vibrans, Christian Ammer17, Peter Schall17, David David Verbyla7, N. M. Tchebakova18, Markus Fischer19, James V. Watson1, Han Y. H. Chen20, Xiangdong Lei, Mart-Jan Schelhaas13, Huicui Lu13, Damiano Gianelle, Elena I. Parfenova18, Christian Salas21, Eungul Lee1, Boknam Lee22, Hyun-Seok Kim, Helge Bruelheide23, David A. Coomes24, Daniel Piotto, Terry Sunderland25, Terry Sunderland26, Bernhard Schmid27, Sylvie Gourlet-Fleury, Bonaventure Sonké28, Rebecca Tavani3, Jun Zhu29, Susanne Brandl8, Jordi Vayreda, Fumiaki Kitahara, Eric B. Searle20, Victor J. Neldner30, Michael R. Ngugi30, Christopher Baraloto31, Christopher Baraloto32, Lorenzo Frizzera, Radomir Bałazy33, Jacek Oleksyn34, Jacek Oleksyn35, Tomasz Zawiła-Niedźwiecki36, Olivier Bouriaud37, Filippo Bussotti38, Leena Finér, Bogdan Jaroszewicz39, Tommaso Jucker24, Fernando Valladares40, Fernando Valladares41, Andrzej M. Jagodziński34, Pablo Luis Peri42, Pablo Luis Peri43, Pablo Luis Peri44, Christelle Gonmadje28, William Marthy45, Timothy G. O'Brien45, Emanuel H. Martin46, Andrew R. Marshall47, Francesco Rovero, Robert Bitariho, Pascal A. Niklaus27, Patricia Alvarez-Loayza48, Nurdin Chamuya49, Renato Valencia50, Frédéric Mortier, Verginia Wortel, Nestor L. Engone-Obiang51, Leandro Valle Ferreira52, David E. Odeke, R. Vásquez, Simon L. Lewis53, Simon L. Lewis54, Peter B. Reich35, Peter B. Reich14 
West Virginia University1, Yale University2, Food and Agriculture Organization3, Landcare Research4, University of Udine5, Max Planck Society6, University of Alaska Fairbanks7, Technische Universität München8, Université du Québec à Montréal9, University of the French West Indies and Guiana10, University of Freiburg Faculty of Biology11, Cornell University12, Wageningen University and Research Centre13, University of Sydney14, Polytechnic Institute of Viseu15, University of Trás-os-Montes and Alto Douro16, University of Göttingen17, Russian Academy of Sciences18, Oeschger Centre for Climate Change Research19, Lakehead University20, University of La Frontera21, Seoul National University22, Martin Luther University of Halle-Wittenberg23, University of Cambridge24, James Cook University25, Center for International Forestry Research26, University of Zurich27, University of Yaoundé I28, University of Wisconsin-Madison29, Queensland Government30, Florida International University31, Institut national de la recherche agronomique32, Forest Research Institute33, Polish Academy of Sciences34, University of Minnesota35, Warsaw University of Life Sciences36, Ştefan cel Mare University of Suceava37, University of Florence38, University of Warsaw39, King Juan Carlos University40, Spanish National Research Council41, National University of Austral Patagonia42, National Scientific and Technical Research Council43, International Trademark Association44, Wildlife Conservation Society45, College of African Wildlife Management46, University of York47, Durham University48, Ontario Ministry of Natural Resources49, Pontificia Universidad Católica del Ecuador50, Centre national de la recherche scientifique51, Museu Paraense Emílio Goeldi52, University of Leeds53, University College London54
14 Oct 2016-Science
TL;DR: A consistent positive concave-down effect of biodiversity on forest productivity across the world is revealed, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.
Abstract: The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.

889 citations

Journal ArticleDOI
TL;DR: Brominated flame retardants, especially the brominated phenols and tetrabromobisphenol A, are very potent competitors for T(4) binding to human transthyretin in vitro and may have effects on thyroid hormone homeostasis in vivo comparable to the thyroid-disrupting effects of PCBs.

887 citations

Journal ArticleDOI
Corinne Le Quéré1, Robbie M. Andrew, Pierre Friedlingstein2, Stephen Sitch2, Julia Pongratz3, Andrew C. Manning1, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell4, Robert B. Jackson5, Thomas A. Boden6, Pieter P. Tans7, Oliver Andrews1, Vivek K. Arora, Dorothee C. E. Bakker1, Leticia Barbero8, Leticia Barbero9, Meike Becker10, Meike Becker11, Richard Betts12, Richard Betts2, Laurent Bopp13, Frédéric Chevallier14, Louise Chini15, Philippe Ciais14, Catherine E Cosca7, Jessica N. Cross7, Kim I. Currie16, Thomas Gasser17, Ian Harris1, Judith Hauck18, Vanessa Haverd4, Richard A. Houghton19, Christopher W. Hunt20, George C. Hurtt15, Tatiana Ilyina3, Atul K. Jain21, Etsushi Kato, Markus Kautz22, Ralph F. Keeling23, Kees Klein Goldewijk24, Kees Klein Goldewijk25, Arne Körtzinger26, Peter Landschützer3, Nathalie Lefèvre27, Andrew Lenton28, Andrew Lenton29, Sebastian Lienert30, Sebastian Lienert31, Ivan D. Lima19, Danica Lombardozzi32, Nicolas Metzl27, Frank J. Millero33, Pedro M. S. Monteiro34, David R. Munro35, Julia E. M. S. Nabel3, Shin-Ichiro Nakaoka36, Yukihiro Nojiri36, X. Antonio Padin37, Anna Peregon14, Benjamin Pfeil11, Benjamin Pfeil10, Denis Pierrot9, Denis Pierrot8, Benjamin Poulter38, Benjamin Poulter39, Gregor Rehder40, Janet J. Reimer41, Christian Rödenbeck3, Jörg Schwinger10, Roland Séférian14, Ingunn Skjelvan10, Benjamin D. Stocker, Hanqin Tian42, Bronte Tilbrook28, Bronte Tilbrook29, Francesco N. Tubiello43, Ingrid T. van der Laan-Luijkx44, Guido R. van der Werf45, Steven van Heuven46, Nicolas Viovy14, Nicolas Vuichard14, Anthony P. Walker6, Andrew J. Watson2, Andy Wiltshire12, Sönke Zaehle3, Dan Zhu14 
University of East Anglia1, University of Exeter2, Max Planck Society3, Commonwealth Scientific and Industrial Research Organisation4, Stanford University5, Oak Ridge National Laboratory6, National Oceanic and Atmospheric Administration7, Atlantic Oceanographic and Meteorological Laboratory8, Cooperative Institute for Marine and Atmospheric Studies9, Bjerknes Centre for Climate Research10, Geophysical Institute, University of Bergen11, Met Office12, École Normale Supérieure13, Centre national de la recherche scientifique14, University of Maryland, College Park15, National Institute of Water and Atmospheric Research16, International Institute for Applied Systems Analysis17, Alfred Wegener Institute for Polar and Marine Research18, Woods Hole Oceanographic Institution19, University of New Hampshire20, University of Illinois at Urbana–Champaign21, Karlsruhe Institute of Technology22, University of California, San Diego23, Utrecht University24, Netherlands Environmental Assessment Agency25, Leibniz Institute of Marine Sciences26, University of Paris27, Cooperative Research Centre28, Hobart Corporation29, Oeschger Centre for Climate Change Research30, University of Bern31, National Center for Atmospheric Research32, University of Miami33, Council of Scientific and Industrial Research34, Institute of Arctic and Alpine Research35, National Institute for Environmental Studies36, Spanish National Research Council37, Montana State University38, Goddard Space Flight Center39, Leibniz Institute for Baltic Sea Research40, University of Delaware41, Auburn University42, Food and Agriculture Organization43, Wageningen University and Research Centre44, VU University Amsterdam45, University of Groningen46
TL;DR: In this paper, the authors quantify the five major components of the global carbon budget and their uncertainties, and the resulting carbon budget imbalance (BIM) is a measure of imperfect data and understanding of the contemporary carbon cycle.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Nino conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quere et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).

884 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the role of natural disturbances in European forests from 1850 to 2000 is presented, which provides a basis for modelling the possible impacts of climate change and enables one to assess trends in disturbance regimes in different countries and/or periods.
Abstract: This paper, based on a literature review, presents a quantitative overview of the role of natural disturbances in European forests from 1850 to 2000. Such an overview provides a basis for modelling the possible impacts of climate change and enables one to assess trends in disturbance regimes in different countries and/or periods. Over the period 1950–2000, an annual average of 35 million m3 wood was damaged by disturbances; there was much variation between years. Storms were responsible for 53% of the total damage, fire for 16%, snow for 3% and other abiotic causes for 5%. Biotic factors caused 16% of the damage, and half of this was caused by bark beetles. For 7% of the damage, no cause was given or there was a combination of causes. The 35 million m3 of damage is about 8.1% of the total fellings in Europe and about 0.15% of the total volume of growing stock. Over the period 1961–2000, the average annual area of forest fires was 213 000 ha, which is 0.15% of the total forest area in Europe. Most types of damage seem to be increasing. This is partly an artefact of the improved availability of information. The most likely explanations for an increase in damage from disturbances are changes in forest management and resulting changes in the condition of the forest. Forest area, average volume of growing stock and average stand age have increased considerably, making the forest more vulnerable and increasing the resources that can be damaged. Since forest resources are expected to continue to increase, it is likely that damage from disturbances will also increase in future.

883 citations

Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations


Authors

Showing all 23851 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Albert Hofman2672530321405
Frank B. Hu2501675253464
Willem M. de Vos14867088146
Willy Verstraete13992076659
Jonathan D. G. Jones12941780908
Bert Brunekreef12480681938
Pedro W. Crous11580951925
Marten Scheffer11135073789
Wim E. Hennink11060049940
Daan Kromhout10845355551
Peter H. Verburg10746434254
Marcel Dicke10761342959
Vincent W. V. Jaddoe106100844269
Hao Wu10566942607
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

96% related

University of Georgia
93.6K papers, 3.7M citations

91% related

Commonwealth Scientific and Industrial Research Organisation
79.9K papers, 3.3M citations

90% related

Ghent University
111K papers, 3.7M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
2022861
20214,144
20203,722
20193,443
20183,226